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Abstract

This article considers a class sixth-order elliptic equations with asymptotically linear:
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u=Au=Au=0, ondQ,’
where(—A)3 ()= —A(A2 ()) denotes the triharmonic operator, Q c R"(n21) is a smooth bounded

domain, ¢,, ¢, are constants. f (x,t) asymptotically linear with respect to ¢. By using the mountain
pass theorem, we give the existence result for nontrivial solutions for the above equation.
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