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摘  要 

这篇文章考虑下列一类渐进线性三调和椭圆方程： 
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其中 ( ) ( ) ( )( )3 2−∆ ⋅ = −∆ ∆ ⋅ 表示三调和算子， ( )nR n 1Ω ⊂ ≥ 是一个有界的光滑区域， c c1 2, 是常数，

( )f x t, 对 t 在无穷远处是渐进线性的。通过使用山路定理，得出上述方程非平凡解的存在性。 
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Abstract 
This article considers a class sixth-order elliptic equations with asymptotically linear:  
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where ( ) ( ) ( )( )3 2−∆ ⋅ = −∆ ∆ ⋅  denotes the triharmonic operator, ( )nR n 1Ω ⊂ ≥ is a smooth bounded 

domain, c c1 2, are constants. ( )f x t, asymptotically linear with respect to t . By using the mountain 
pass theorem, we give the existence result for nontrivial solutions for the above equation. 
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1. 引言 

在这篇文章中，我们考虑下面一类三调和椭圆方程边值问题解的存在性： 

 ( )3 2
1 2

2

, , ,
0, ,

u c u c u f x u
u u u
−∆ + ∆ + ∆ = Ω


= ∆ = ∆ = ∂Ω

在 中

在 上
 (1) 

其中 ( ) ( ) ( )( )3 2−∆ ⋅ = −∆ ∆ ⋅ 表示三调和算子， ( )1nR nΩ⊂ ≥ 是一个有界的光滑区域， 1 2,c c 是常数。 
三调和问题广泛出现在科学与工程领域的诸多应用中。特别地，在流体力学中，三调和方程用于描

述[1]中中小型腔体内二维缓慢旋转的高粘性流体流动。此外，三调和方程还可应用于薄膜模型[2] [3]，相

场晶体模型[4] [5]，几何设计模型[6] [7]。 
近年来，双调和问题引起了许多学者的兴趣，许多不同的方法被研究者研究。例如文献[8]-[15]。特

别地，在文献[16]中，Liu 和 Wang 考虑了如下的双调和方程： 

 ( )2 , , ,
,0,

u f x u
u u
∆ = Ω
= ∆ = ∂Ω





在 中

在 上
 (2) 

其中 ( )4nR nΩ⊂ > 是一个光滑的有界区域。通过应用山路定理，证明了方程(2)正解的存在性和非存在性。 
在文献[17]中，Feng 研究了如下的四阶椭圆方程： 

 ( )2 , , ,
0, ,

u f x u
u u

λ

∆ = Ω
= ∆ = ∂Ω

在 中

在 上
 (3) 

其中 0λ ≠ 是一个参数， ( )2nR nΩ⊂ ≥ 是一个光滑有界区域，非线性项 [ ) [ )( )0, , 0,f C∈ Ω× +∞ +∞ 。通过

在锥上使用不动点定理，证明了双调和问题(3)正解的存在性、多重性、非存在性。 
在文献[18]中，Dalmasso 应用极值原理证明了下列双调和问题 

 
2 , ,

0,

p
R

R

u u B
u u B
∆ =
= ∆



=




在 中

在 上
 (4) 

正解的存在性和唯一性，其中 RB 表示在 ( )1nR n ≥ 中以原点为中心，半径为 R 的球。 ( ) ( )0,1 1,p∈ ∪ +∞ 。 
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在文献[19]中，An 和 Liu 研究了如下的四阶椭圆问题： 

 ( )2 , , ,
0, ,

u c u f x u
u u
∆ + ∆ = Ω
= ∆ = ∂Ω





在 中

在 上
 (5) 

其中 2∆ 表示双调和算子，c 是常数，且 1c λ< ， ( )1,2,k kλ =  为 −∆在空间 ( )1
0H Ω 中的特征值。应用山路

定理，证明了方程(5)非平凡解的存在。之后，Hu 和 Wang 在文献[20]中使用变形的山路定理推广了文献

[16]和文献[19]中的结果。 
然而，与双调和问题的可解性研究成果相比，三调和问题的相关结论较为有限，这是因为三调和问

题的研究比双调和问题更为复杂。由于缺乏适用于二阶椭圆方程的通用极值原理和一些其他典型的技术，

到目前为止关于三调和的研究成果非常有限。例如，在文献[21]中 Zhao 和 Miao 使用山路定理和喷泉定

理研究了下列 ( )p x -三调和方程 

 ( ) ( )3

2

, , ,

0,
p x u f x u

u u u

λ−∆ = Ω

= ∆ = ∆ = ∂



 Ω





在 中

在 上
  (6) 

解的存在性，其中 ( )
( )( )( )23 p x

p x u div u u−∆ = ∆ ∇∆ ∇∆ 表示 ( )p x -三调和算子， ( ) ( )p x C∈ Ω 且满足 

( ) ( )3 : inf : sup
x x

p p x p p x− +

∈Ω ∈Ω
< = ≤ = ， 

λ 是一个实数， ( ) ( )
0

, , d
t

F x t f x s s= ∫ 。 
因此，在这篇文章中，我们尝试对一类带有 Navier 边界条件的三调和问题做一些研究。此外，这篇

文章有如下特点：首先，与文献[21]相比，我们考虑常数 1c 和 2c ，更具有一般性。第二，我们研究的方程

的解与第一特征值有关，这在文献[21]中并未涉及。 
在这篇文章中，我们假设 ( ),f x u 满足下列条件： 
(S1) ( ) ( ) ( ) ( ), ; , 0, , 0, , 0, , 0f x t C R f x t x t f x t x t∈ Ω× ≡ ∀ ∈Ω ≤ ≥ ∀ ∈Ω > ； 

(S2) ( ) ( ), ,pf x t a x b t t R≤ + ∀ ∈ ， . . a e x∈Ω，其中 ( ) ( ) 1 1, , 1qa x L b R
p q

∈ Ω ∈ + = ，且当 6N > 时，

61
6

Np
N
+

< <
−

；当 6N ≤ 时，1 p< < ∞； 

(S3) 对于 . . a e x∈Ω，
( ),f x t
t

关于 0t ≥ 是非减的； 

(S4) 
( )

0

,
lim
t

f x t
t

µ
→

= ；
( ),

lim
t

f x t
t

ν
→∞

= 对 . . a e x∈Ω一致成立，其中 

( )2
1 1 1 1 2c cµ λ λ λ ν< + − < < +∞， 

( )2
1 2k k k kc cν λ λ λ≠ Λ = + − 为常数， ( )1,2,k kλ =  为 −∆在空间 ( )1

0H Ω 中的特征值。 
我们的主要结果如下： 
定理 1.1 令 2

2 1 1 1c cλ λ< + ，假设条件(S1)~(S4)成立，那么问题(1)至少有一个非平凡解。 

2. 预备知识 

设 nRΩ⊂ 是一个有界光滑区域，定义希尔伯特空间 

( ) ( )3 1
0H H H= Ω ∩ Ω ， 

并赋予其内积： 
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( ) ( ), dHu v u v u v u v x
Ω

= ∇∆ ∇∆ + ∆ ∆ +∇ ∇∫ ， 

由此诱导的范数为： 
2 2 2 2d d dHu u x u x u x

Ω Ω Ω
= ∇∆ + ∆ + ∇∫ ∫ ∫ 。 

令 ( )1,2,k kλ =  是下列特征值问题 

, ,
0,

u u
u

λ−∆ = Ω
= ∂



 Ω

在 中

在 上
 

的特征值， ( )1,2,k kϕ =  是对应的特征函数，每个特征值 kλ 按重数重复计入。则有 

1 20 kλ λ λ< < ≤ ≤ →∞ ， 

且由于在 Navier 边界条件下，算子可分解为二阶算子的复合，因此 ( )1 0xϕ > 对所有的 x∈Ω成立。 
对于任意的 1,2,k = ，令 ( )2

1 2k k k kc cλ λ λΛ = + − ，我们称 kΛ 是下列特征值问题 

 
3 2

1 2
2

, ,
0,

u c u c u u
u u u
−∆ + ∆ + ∆ = Λ Ω

 = ∆ = ∆ = ∂Ω

在 中

在 上
 (7) 

的特征值，对应的特征函数仍为 ( )k xϕ 。 
注意到在Ω中 k k kϕ λ ϕ−∆ = ，且 0kϕ ∂Ω

= 。则有 

( ) ( )( ) ( ) ( ) ( )( ) ( )2 23 2 3
k k k k k k k k k kϕ ϕ λ ϕ λ ϕ λ ϕ λ ϕ−∆ = −∆ −∆ = −∆ = −∆ −∆ = −∆ = ， 

( ) ( )2 2
k k k k k k k k k kϕ λ ϕ λ ϕ λ λ ϕ λ ϕ∆ = ∆ − = − ∆ = − − = 。 

因此 

( )3 2 3 2 2
1 2 1 2 1 2k k k k k k k k k k k k k k kc c c c c cϕ ϕ ϕ λ ϕ λ ϕ λ ϕ λ λ λ ϕ ϕ−∆ + ∆ + ∆ = + − = + − = Λ 。 

所以 kΛ 是特征值问题(7)的特征值，对应的特征函数为 ( )k xϕ 。 
显然函数集 ( )k xϕ 构成空间 H 的一组正交基，因此空间 H 中的任意元素 u 都可以表示为 

2

1 1
,k k k

k k
u u uϕ

∞ ∞

= =

= < ∞∑ ∑ 。 

假设 2
2 1 1 1c cλ λ< + ，为 u H∈ 定义如下新的范数： 

2 2 2 2
1 2d d du u x c u x c u x

Ω Ω Ω
= ∇∆ + ∆ − ∇∫ ∫ ∫ 。 

引理 2.1 范数 ⋅ 与原范数 H⋅ 在 H 中等价，且对所有的 u H∈ ，满足如下 Poincaré 不等式： 

 2
2 2

1 Lu u≥ Λ 。 (8) 

证明 注意到 

{ }( )

2 2 2 2
1 2

2 2 2
1 2

2 2 2
1 2

2

d d d

d d d

max 1, , d d d

.H

u u x c u x c u x

u x c u x c u x

c c u x u x u x

uβ

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

= ∇∆ + ∆ − ∇

≤ ∇∆ + ∆ + ∇

≤ ∇∆ + ∆ + ∇

=

∫ ∫ ∫
∫ ∫ ∫

∫ ∫ ∫
 

其中 { }1 2max 1, ,c cβ = 。 
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设{ }kϕ 是 −∆在 ( )1
0H Ω 中的正交归一特征函数组，对应的特征值为 kλ ，则 u H∈ 可展开为 

1
, dk k k k

k
u u u u xϕ ϕ

∞

Ω
=

= =∑ ∫ ， 

则有
1

k k k
k

u uλ ϕ
∞

=

∆ = −∑ ，因此 

2 2 23 2 2 2 2

1 1 1
,  ,  k k k k k k

k k k
u u u u u uλ λ λ

∞ ∞ ∞

= = =

∇∆ = ∆ = ∇ =∑ ∑ ∑ 。 

因此原范数为 

( )2 3 2 2

1
k k k kH

k
u uλ λ λ

∞

=

= + +∑ ， 

新定义的范数为 

( )2 3 2 2 2
1 2

1 1
k k k k k k

k k
u c c u uλ λ λ

∞ ∞

= =

= + − = Λ∑ ∑ ，其中 ( )2
1 2:k k k kc cλ λ λΛ = + − 。 

令 

( )
( )

2 2
1 2 1 2

3 2 22
:

11
k k kk k k

k
k k k k kk k k

c c c cλ λ λ λ λρ
λ λ λ λ λλ λ λ

+ −Λ + −
= = =

+ + + ++ +
。 

注意到 kλ →∞ ，且 2
2 1 1 1c cλ λ< + ，因此 0kρ > 且 1kρ → 。于是 kρ 有下确界，记为 inf 0kρ ρ∗ = > 。因此 

( ) ( )2 22 3 2 2 3 2 2

1 1 1
k k k k k k k k k k k H

k k k
u u u u uρ λ λ λ ρ λ λ λ ρ

∞ ∞ ∞

∗ ∗
= = =

= Λ = + + ≥ + + =∑ ∑ ∑ 。 

取α ρ∗= ， { }1 2max 1, ,c cβ = ，则显然 , 0α β > ，且对所有的u H∈ ，都有 
2 2 2

H Hu u uα β≤ ≤ 。 

因此范数 ⋅ 与原范数 H⋅ 在 H 中等价。 

又因为 2
2 22 2

1 1
1 1

k k k L
k k

u u u u
∞ ∞

= =

= Λ ≥ Λ = Λ∑ ∑ ，因此 Poincaré 不等式成立。 

定义 2.1 设泛函 ( ) :  I u H R→ 定义如下： 

( ) ( ) ( )2 2 2
1 2

1 d d d , d
2

I u u x c u x c u x F x u x
Ω Ω Ω Ω

= ∇∆ + ∆ − ∇ −∫ ∫ ∫ ∫ ， 

其中 ( ) ( )
0

, , d
u

F x u f x t t= ∫ 。 
定义 2.2 如果u H∈ 满足如下恒等式： 

( ) ( )1 2 d , du v c u v c u v x f x u v x
Ω Ω
∇∆ ∇∆ + ∆ ∆ − ∇ ∇ =∫ ∫ 对 v H ∗∀ ∈ ， 

其中 H ∗ 表示空间 H 的对偶空间，那么称 u 是问题(1)的一个弱解。 
由临界点理论可知，问题(1)的弱解就是泛函 ( )I u 的临界点。我们将应用山路定理来证明泛函 ( )I u

存在非平凡的临界点。 
定义 2.3 设 E 是实 Banach 空间， ( )1 ,I C E R∈ 。若序列{ }nu E⊂ 满足： 
(i) ( )nI u C→ ，当 n →∞； 
(ii) ( ) , 0n nI u u′ → ，当 n →∞， 

则称{ }nu 是泛函 I 的一个(PS)序列。如果任何(PS)序列都存在一个收敛子列，则称泛函 I 满足(PS)条件。 
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引理 2.2 [19]设 E 是实 Banach 空间， ( )1 ,I C E R∈ 满足(PS)条件。若满足： 
(i) 存在 0, 0aρ > > ，使得 

( ) ( )0 ,    I u I a u Bρ≥ + ∀ ∈∂ ， 

其中 { }: :B u E uρ ρ= ∈ ≤ ； 
(ii) 存在 ,e E e ρ∈ > ，使得 

( ) ( )0I e I≤ ， 

则泛函 ( )I u 存在一个临界值C ，其可表征为： 

[ ]( )
( )

0,1
inf max

u
C I u

γ γ∈Γ ∈
= ， 

其中 [ ]( ) ( ) ( ){ }0,1 , 0 0, 1C E eγ γ γΓ = ∈ = = 。 

引理 2.3 假设条件(S1)和(S3)成立，设{ }nu 为泛函 ( )I u 的(PS)序列，则序列{ }nu 在 H 中存在子列，仍

记为{ }nu ，使得 

 ( ) ( )
21

2n n
tI tu I u
n
+

≤ +  (9) 

对所有的 0t > 和 n N∈ 成立。 
证明 设{ }nu H⊂ 为(PS)序列，即当 n →∞时，有 

( ) ( ),  , 0n n nI u C I u u′→ → 。 

则对于适当的子列，仍记为{ }nu ，对 n N∀ ∈ ，我们有 

 ( ) ( )( ) ( )21 1, , dn n n n nI u u u f x u x u x x
n nΩ

′− < = − <∫ 。 (10) 

我们断言对任意的 0t > 和 n N∈ ，有 

 ( ) ( )( ) ( ) ( )( )
2 1 , , d

2 2n n n n
tI tu f x u x u x F x u x x
n Ω

 ≤ + −  ∫ 。 (11) 

事实上，固定 x∈Ω，对 0t∀ > 和 n N∈ ，令 

( ) ( )( ) ( ) ( )( )21 , ,
2 n n nh t t f x u x u x F x tu x= −  

那么根据条件(S3)，我们有 

( ) ( )( ) ( ) ( )( ) ( )
( )( )

( ) ( ) ( )( )
( ) ( )2 2

, ,

, ,

0,    0< <1,
0,       1.

n n n n

n n
n n

n n

h t tf x u x u x f x tu x u x

f x u x f x tu x
t u x u x

u x tu x

t
t

′ = −

 
= −  

 
≥

= ≤ ≥

 

因此 

( ) ( )1    0h t h t≤ ∀ > ， 
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也就是 

 ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
2 1, , , ,    0
2 2n n n n n n
t f x u x u x F x tu x f x u x u x F x u x t− ≤ − ∀ > 。  (12) 

因此由(10)式和(12)式可得 

( ) ( ) ( )

( )

( )( ) ( ) ( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

2
2 2 2

1 2

2
2

2

2 2

2

d d d , d
2

, d
2

1 , d , d
2

, , d
2 2

1 , , d ,
2 2

n n n n n

n n

n n n

n n n

n n n

tI tu u x c u x c u x F x tu x

t u F x tu x

t f x u x u x x F x tu x
n

t t f x u x u x F x tu x x
n

t f x u x u x F x u x x
n

Ω Ω Ω Ω

Ω

Ω Ω

Ω

Ω

= ∇∆ + ∆ − ∇ −

= −

 < + − 
 

 
= + − 

 

 ≤ + −  

∫ ∫ ∫ ∫

∫

∫ ∫

∫

∫

 

因此(11)式得证。此外 

( ) ( ) ( )

( )

( )( ) ( ) ( )

2 2 2
1 2

2

1 d d d , d
2
1 , d
2
1 1 , d , d .
2

n n n n n

n n

n n n

I u u x c u x c u x F x u x

u F x u x

f x u x u x x F x tu x
n

Ω Ω Ω Ω

Ω

Ω Ω

= ∇∆ + ∆ − ∇ −

= −

 ≥ − + − 
 

∫ ∫ ∫ ∫

∫

∫ ∫

 

因此 

 ( )( ) ( ) ( )( ) ( )1 1, , d
2 2n n n nf x u x u x F x u x x I u

nΩ Ω

 − ≤ + 
 ∫ ∫ 。 (13) 

结合(11)式和(13)式，(9)式得证。 
引理 2.4 [16]如果在 ( )pL Ω 中 n

nu u→ ，1 p≤ < ∞，那么在 ( )pL Ω 中 n
nu u+ +→ ，其中 

{ }max ,0n nu u+ = ， { }max ,0u u+ = 。 
引理 2.5 假设 2

2 1 1 1c cλ λ< + ，且条件(S1)~(S4)成立，则 ( )I u 满足(PS)条件。 
证明 设{ }nu H⊂ 为(PS)序列，即满足当 n →∞时，有 

 ( ) ( ),   , 0n n nI u C I u u′→ → 。 (14) 

由于Ω有界且 ( ),f x t 次临界，因此如果{ }nu 在空间 ( ) ( )3 1
0H H H= Ω ∩ Ω 中有界，根据 Sobolev 嵌入

的紧性和标准变分方法，我们可知存在{ }nu 的一个子序列强收敛于 I 的某个非平凡临界点，证明完成。

因此我们只需证明{ }nu 在 H 中有界。 
下面用反证法证明{ }nu 在 H 中有界。假设 nu →+∞，令 

 2
n

n

Ct
u

= ，
2 n

n n n
n

Cuw t u
u

= = ， (15) 

其中 0C > 是(14)式中给定的常数。显然，{ }nw 在 H 中有界。通过提取一个子序列，我们可以假设 

nw w ，在 H 中， 
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nw w→ ，几乎处处在Ω中， 

nw w→ ，在 ( )2L Ω 中。 

下面证明 0w ≠ 。事实上，若 0w ≡ ，则在 ( )2L Ω 中 0nw → 。因此 

( )( ) ( )
0

lim , d lim , d d 0nw
nn n

F x w x x f x t t x
Ω Ω→∞ →∞

= =∫ ∫ ∫ 。 

进一步有 

 ( ) ( )( )21 , d 2
2n n nI w w F x w x x C

Ω
= − →∫ 。 (16) 

由 nu →+∞，结合(15)式可得当 n →∞时 0nt → 。因此根据(14)式和引理 2.3 有 

 ( ) ( ) ( )
21 0

2n n n n
tI w I t u I u C
n
+

= ≤ + → > 。 (17) 

显然这与(16)式矛盾。因此 0w ≠ 。下面证明 w 满足 

 ( )1 2 d dw c w c w x w xϕ ϕ ϕ ν ϕ
Ω Ω
∇∆ ∇∆ + ∆ ∆ − ∇ ∇ =∫ ∫ 。 (18) 

令 

( )
( )( )

( ) ( )
,

, 0,

0, .

n
n

n n

f x u x
x u x

g x u x
∈Ω >




=




且

其它

 

根据假设(S3)和(S4)我们知道 

( )0 ,    ng x xν≤ ≤ ∀ ∈Ω。 

在{ }ng 中选取适当的子列，为了方便仍记为{ }ng ，则存在 ( )2g L∈ Ω ，使得 

ng g ，在 ( )2L Ω 中， 

且 

( )0 g x ν≤ ≤ ， . .a e 在Ω中。 

因为 nu →+∞且在Ω 中 . . na e w w→ ，这意味着如果在Ω 中 ( ). . 0a e w x > ，则有 . . na e u →+∞。结合

假设(S4)，我们有 

 ( )g x ν≡ ，当 ( ) 0w x > 时， (19) 

对任意的 ( )2Lϕ∈ Ω ，由于在 ( )2L Ω 中 nw w→ ，由引理 2.4 可知 nw w+ +→ 。因此我们有 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d dn n n ng x w x x x g x w x x x g x w x x xϕ ϕ ϕ+ +

Ω Ω Ω
= →∫ ∫ ∫ ， 

其中 ( ) ( ){ }max ,0w x w x+ = ， ( ) ( ){ }max ,0w x w x− = − 。由于{ }n ng w 在 ( )2L Ω 中有界，因此 

n ng w gw+
 ，在 ( )2L Ω 中。 

又因为 ( ) 0nI u′ → ， nu →∞，因此对任意的 Hϕ∈ ，我们有 

( ) ( ) ( )1 2
2d d , 0n n n n n n n n

n

Cw c w c w x g w x t I u I u
u

ϕ ϕ ϕ ϕ ϕ ϕ
Ω Ω

′ ′∇∆ ∇∆ + ∆ ∆ − ∇ ∇ − = ≤ →∫ ∫ 。 
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由于在 H 中 nw w 且在 ( )2L Ω 中 n ng w gw+
 ，因此对所有的 Hϕ∈ ，有 

 ( )1 2 d d 0w c w c w x gw xϕ ϕ ϕ ϕ+
Ω Ω
∇∆ ∇∆ + ∆ ∆ − ∇ ∇ − =∫ ∫ 。 (20) 

取 wϕ −= ，代入(20)式，得 0w− = 。因此在Ω 中 0w w+≡ ≥ 。结合极值原理可得在Ω 内 ( ) 0w x > 。

因此，根据(19)式我们有 ( )g x ν≡ ，且对所有的 Hϕ∈ 有 

 ( )1 2 d d 0w c w c w x w xϕ ϕ ϕ ν ϕ
Ω Ω
∇∆ ∇∆ + ∆ ∆ − ∇ ∇ − =∫ ∫ 。 (21) 

这意味着 ( ) 0w x > 是下列三调和方程 
3 2

1 2u c u c u uν−∆ + ∆ + ∆ =  

的一个非平凡解。这与 kν ≠ Λ 矛盾。因此{ }nu 在 H 中有界。 

3. 主要结果的证明 

定理 1.1 的证明 

由引理 2.5 可知 ( )I u 满足(PS)条件。下面验证 ( )I u 也满足山路几何条件。由条件(S1)、(S2)和(S4)可
知对 1 20, , 0C Cε∀ > ∃ > ，使得对 ( ),x s R∀ ∈Ω× ，有 

 ( ) ( ) 2 1
1

1,
2

pF x s s C sµ ε +≤ + + ，                         (22) 

 ( ) ( ) 2
2

1,
2

F x s s Cν ε− + 。              (23) 

取 0ε > 足够小，使得 1µ ε+ < Λ ，根据(22)式和 Poincaré 不等式(8)，结合 Sobolev 不等式 

1
1 1

p
p p
Lu K u+
+ +≤  

可得 

( ) ( ) ( )

2 1

1

2 2 2
1 2

2 2 1
1

2 2 1
1

1

2 1
1

1

1 d d d , d
2
1
2 2
1
2 2

1 1 .
2

p

p

p
L L

p
L

p

I u u x c u x c u x F x u x

u u C u

u u C u

u C K u

µ ε

µ ε

µ ε

+

+

Ω Ω Ω Ω

+

+

+

= ∇∆ + ∆ − ∇ −

+
≥ − −

+
≥ − −

Λ

 +
≥ − − Λ 

∫ ∫ ∫ ∫

 

因此取 0u ρ= > 足够小，使得 

2 1
1

1

1 1 0
2

pa C Kµ ε ρ ρ + +
= − − > Λ 

， 

可得 

( ) ( )0 ,    I u I a a u Bρ≥ + = ∀ ∈∂ ， 

其中 { }: :B u E uρ ρ= ∈ ≤ 。 
另一方面，取 0ε > 足够小使得 1ν ε− > Λ ，由(23)式可得 
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( ) ( ) ( )

2

2 2 2
1 2

2 2
3

1 d d d , d
2
1 .
2 2 L

I u u x c u x c u x F x u x

u u Cν ε
Ω Ω Ω Ω

= ∇∆ + ∆ − ∇ −

−
≤ − +

∫ ∫ ∫ ∫
 

取 1u tϕ= ，则 

( ) 2
2 22 2

1 1 1 3
1
2 2 LI t t t Cν εϕ ϕ ϕ−

≤ − + 。 

由于 1ϕ 是 −∆的第一特征值 1λ 对应的正的特征函数，即 

1 1 1 1,    0ϕ λϕ ϕ
∂Ω

−∆ = = 。 

同时， 1ϕ 也为三调和算子的特征函数，即 
3 2

1 1 1 2 1 1 1c cϕ ϕ ϕ ϕ−∆ + ∆ + ∆ = Λ 。 

因此 
2 2 2 2

1 1 1 1 2 1d d dx c x c xϕ ϕ ϕ ϕ
Ω Ω Ω

= ∇∆ + ∆ − ∇∫ ∫ ∫ 。 

根据 Green 第一恒等式结合边界条件，我们有 

2

2 2
1 1 1

2
1 1 1

1 1 1

1 1 1

23
1 1

23
1 1

d d

d

d

d

d

,L

x x

x

x

x

x

ϕ ϕ ϕ

λ ϕ ϕ

λ ϕ ϕ

λ ϕ ϕ

λ ϕ

λ ϕ

Ω Ω

Ω

Ω

Ω

Ω

∇∆ = − ∆ ⋅∆

= ∆

= − ∇ ⋅∇∆

= ∆ ⋅∆

=

=

∫ ∫
∫
∫
∫
∫

 

同理可得 

2
2 22

1 1 1d Lxϕ λ ϕ
Ω
∆ =∫ ， 2

2 2
1 1 1d Lxϕ λ ϕ

Ω
∇ =∫ ， 

因此 

( )2 2 2 2 2
2 2 2 2 2 23 2 2

1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1L L L L Lc c c cϕ λ ϕ λ ϕ λ ϕ λ λ λ ϕ ϕ= + − = + − = Λ 。 

因此当 t →+∞时 

( ) 22
1 1 3

1

1 1
2

I t t Cν εϕ ϕ
 −

≤ − + → −∞ Λ 
。 

这意味着存在 ,e H e ρ∈ > ，使得 ( ) ( )0 0I e I≤ = 。因此由引理 2.2 知问题(1)至少有一个非平凡解。 
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