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Abstract

Semilinear parabolic equations play a crucial role in describing evolutionary processes such as fluid
motion and heat conduction. Existing research has predominantly focused on equations with spe-
cific forms, leaving the well-posedness analysis of generalized models insufficiently explored.
Building upon the fractional Navier-Stokes equations proposed by Diego Chamorro and Maxence
Mansais, this paper retains the core structure of the nonlinear term while optimizing parameters
to establish a generalized model for a class of semilinear parabolic equations. By applying the Du-
hamel principle to transform the equation into an equivalent integral form, and utilizing key tools
such as the Banach fixed-point theorem, characterization of Besov spaces, time-decay estimates for
fractional semigroups, and the Young convolution inequality, we prove that in the critical space

I ([0,+oo)x R’ ) , when the norms of the initial data and external force term satisfy a smallness

threshold constraint, the equation admits a unique global mild solution. This generalized model
extends the applicability of traditional semilinear parabolic equations and provides a unified ana-
lytical framework for studying dynamical behaviors under different fractional diffusion effects and
nonlinear intensities. The theoretical results offer valuable insights for extending the theory of frac-
tional parabolic equations.
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