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摘  要 

在描述流体运动、热传导等演化过程时，半线性抛物方程是一类重要方程。现有研究多围绕特定形式的

方程展开，对广义化模型的适定性分析有待完善。本文以Diego Chamorro与Maxence Mansais提出的分

数阶Navier-Stokes方程为基础，保留非线性项核心结构并进行参数优化，建立了一类一般化的半线性抛

物方程模型。利用Duhamel原理将方程转化为等价的积分形式，运用Banach不动点原理、Besov空间刻

画、分数阶半群时间衰减估计及卷积Young不等式等关键工具，在临界空间 [ )( )d
kL R, , 0,∞ +∞ ×α β 中，证明

了：当初始数据与外力项的范数满足小性阈值约束时，方程存在唯一的全局温和解。该一般化模型拓展

了传统半线性抛物方程的适用场景，为研究不同分数阶扩散效应与非线性强度下的动力学行为提供了统

一分析框架，相关理论结果对分数阶抛物方程的理论延伸具有参考价值。 
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Abstract 
Semilinear parabolic equations play a crucial role in describing evolutionary processes such as fluid 
motion and heat conduction. Existing research has predominantly focused on equations with spe-
cific forms, leaving the well-posedness analysis of generalized models insufficiently explored. 
Building upon the fractional Navier-Stokes equations proposed by Diego Chamorro and Maxence 
Mansais, this paper retains the core structure of the nonlinear term while optimizing parameters 
to establish a generalized model for a class of semilinear parabolic equations. By applying the Du-
hamel principle to transform the equation into an equivalent integral form, and utilizing key tools 
such as the Banach fixed-point theorem, characterization of Besov spaces, time-decay estimates for 
fractional semigroups, and the Young convolution inequality, we prove that in the critical space 

[ )( )d
kL R, , 0,∞ +∞ ×α β , when the norms of the initial data and external force term satisfy a smallness 

threshold constraint, the equation admits a unique global mild solution. This generalized model 
extends the applicability of traditional semilinear parabolic equations and provides a unified ana-
lytical framework for studying dynamical behaviors under different fractional diffusion effects and 
nonlinear intensities. The theoretical results offer valuable insights for extending the theory of frac-
tional parabolic equations. 
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1. 绪论 

1.1. 研究背景 

本研究旨在建立一类广义半线性抛物方程在临界空间中的适定性理论。其理论基础源于 Navier-
Stokes 方程温和解理论的深刻发展，并最终指向对更一般模型的探索。以下将分三个阶段阐述该研究

脉络。 

1.1.1. 经典 Navier-Stokes 方程的温和解理论 
不可压缩 Navier-Stokes 方程作为流体力学的基础模型，其解的存在性与正则性问题是数学界的核心

挑战。温和解理论已成为一个极为有效的框架。Fujita 和 Kato [1]完成了这一理论的奠基性工作，他们通

过 Duhamel 原理将方程转化为积分形式，首次在临界 Sobolev 空间 1 2H 中，为小初值情形建立了局部温

和解的存在唯一性，并证明其可延拓为全局解。该理论框架被不断拓展，例如 Cannone [2]将其系统化至

齐次 Besov 空间，而 Koch 和 Tataru [3]则在最大临界空间 1BMO− 中针对小初值建立了适定性。然而，一

个根本性的问题是：如果初值在 1BMO− 空间中很大，解的唯一性是否会失效？近期，Coiculescu 和 Palasek 
[4]的突破性工作给出了否定答案，他们证明了存在一个属于 1BMO− 空间的初值，使得 Navier-Stokes 方程

产生两个不同的全局光滑解。这揭示了在临界空间中，解的唯一性严格依赖于初值足够小。 
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1.1.2. 广义 Navier-Stokes 方程：分数阶模型的温和解理论 
为了描述具有非标准扩散特性的复杂流体，数学家们引入了分数阶 Navier-Stokes 方程，其线性耗散

项由分数阶拉普拉斯算子 ( ) 2
α

−∆ ( )1 2α< < 主导。分数阶 Navier-Stokes 方程温和解理论的系统研究，由

Lions [5]的开创性工作奠定基础。随后，Cannone 与 Wu [6]在 Fourier-Besov 空间的框架下，为该方程建

立了系统的全局适定性理论，明确了相应临界空间的尺度。进一步地，Miao，Yuan 与 Zhang [7]将研究拓

展至更一般的分数阶耗散方程，发展了普适性的正则性估计方法。近期，Chamorro 与 Mansais [8]的工作

引入了更一般的外力项，并在此设定下完善了临界空间中的解理论。这一系列研究共同将温和解的理论

框架从经典的二阶扩散情形，推广至了更一般的分数阶情形。 

1.1.3. 半线性抛物方程的统一框架与本文的推广 
从数学模型的高度来看，前述 Navier-Stokes 方程均可在形如 ( ) ( )2tu F u

α

∂ + −∆ = 的发展方程框架下进

行研究。该框架以分数阶耗散为核心线性机制，其相应的温和解理论为分析 Navier-Stokes 方程提供了有

效工具。 
然而，现有文献多集中于非线性项 ( )F u 为特定形式的情形，本文将研究一类更一般的方程，其形式

为 ( ) ( ) ( )1
2

k
tu u u u f

α β −∂ + −∆ = −∆ + 。对此类半线性抛物方程，其系统的温和解理论仍是一个有待深入探

索的重要课题。本文的研究目的正是填补这一空白。基于文献[8]中 Chamorro 和 Mansais 对分数阶 Navier-
Stokes 方程的研究，我们构建了一类更具普适性的模型。本文的核心贡献在于：通过严格的尺度分析，

定义了与模型参数 ( ), , kα β 相适应的临界空间 [ )( ), , 0, d
kL Rα β

∞ +∞ × ，并在此空间中证明了全局温和解的存

在唯一性。 

1.2. 物理来源与模型抽象 

本文研究的广义半线性抛物方程 ( ) ( ) ( )1
2

k
tu u u u f

α β −∂ + −∆ = −∆ + 是对多个物理模型核心结构的提

炼。非线性项 ( ) ( )1ku uβ −−∆ 与分数阶耗散算子 ( ) 2t

α

∂ + −∆ 的组合，概括了一类重要的演化行为。 

当
12, , 2
2

kα β= = = 时，方程(1.2)可退化为经典的 Navier-Stokes 方程： 

( ),       0.tu u u u p div u∂ + ⋅∇ = ∆ −∇ =  

通过 Leray 投影算子可消去压力项 p 并维持散度为零的条件。本文略去了矢量场的旋度结构、Leray
投影和不可压缩条件 ( ) 0div u = ，将其简化为一个标量模型进行研究。 

当 0β = 时，方程(1.2)退化为经典的半线性抛物方程： 

( ) 1
2 .k

tu u u u
α

−∂ + −∆ =  

该方程广泛应用于描述种群动力学、化学燃烧过程以及某些多孔介质中的渗流问题。 

1.3. 本文研究的主要内容 

2025年，Diego Chamorro 和Maxence Mansais [8]证明了如下带外力项的不可压缩分数阶Navier-Stokes
方程在三种临界空间中全局温和解的存在唯一性。 

 ( ) ( ) ( ) ( )
( ) ( )

2

0 0

,      0,     1 2 ,

0, ,       0.
tu u div u u p f div u

u u div u

α

α∂ + −∆ + ⊗ +∇ = = < <

 ⋅ = =

 (1.1) 

基于以上研究，本文将去除压力项和不可压缩约束的条件，考虑 ( )3dR d ≥ 上的一类标量半线性抛物

方程， 
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( ) ( ) ( ) ( )
( )

1
2

0

,         2 2 ,

0, .

k
tu u u u f k

u u

α β β α β−∂ + −∆ = −∆ + < <

 ⋅ =

 

通过 Duhamel 原理，将原抛物方程转化为如下等价的积分形式： 

 ( ) ( ) ( )1
0 0 0

d d ,
t tk

t t s t su p u p u u s p f sβ −
− −= ∗ + ∗ −∆ + ∗∫ ∫   (1.2) 

其中 ( )0tp t > 是分数阶热核，满足  ( ) e t
tp

αξξ −= 。 
本文的主要研究目的是，在临界空间 [ )( ), , 0, d

kL Rα β
∞ +∞ × 中，证明全局温和解的存在性，而以下定理

是这一目标的核心成果。 

定理 1：设以下参数固定： 0 ,dp
α
 ∈ +∞  

， 0β > ，α 满足 2 2kβ α β< < ，η满足 

0 0

2
1

d d
p k p

β α η α−
− − < < −

−
。考虑 0 : du R R→ 为初始数据，并且 ( )

2
1

0 ,
dku B R

α β− − − 
∞ ∞∈  。设 [ ): 0, df R R+∞ × →

为一个外力，并且 ( ) ( ),

0

2
0

sup ,po
p

F
L

f fη
ρ

η
ρ

τ
τ τ−

−

>
= −∆ ⋅ ，其中

0

1 21
1

d
p k

β αρ η
α
 −

= − + + − 
。 

如果量
2

,1 0
,0 pk FBu fα β

η
ρ

− −  −− 
∞ ∞

+


足够小，那么分数阶问题(1.2)存在一个全局温和解 u 使得 

[ )( ), , 0, d
ku L Rα β

∞∈ +∞ × ，其中 

[ )( ) [ ) [ )( ){ }, ,, , 0, : 0, , 0, : ,
k

d d d
k LL R R R S R

α βα β ϕ φ ϕ ∞
∞ ′+∞ × = +∞ × → ∈ +∞ × < +∞  

并且 

( ) ( )
, ,

2
1

0
sup , .

k

k
L Lt

t t
α β

α β
αϕ ϕ∞ ∞

−
−

>
= ⋅  

定理 1 的证明主要基于压缩映射原理。文献[8]中为证明分数阶 Navier-Stokes 方程温和解所采用的证

明框架与关键技术，在本问题的研究中仍然适用。具体而言，本文将通过建立初始数据项、非线性项及

外力项在空间 [ )( ), , 0, d
kL Rα β

∞ +∞ × 中的先验估计来验证压缩性。证明的主要调整在于，需根据本文引入的

一般参数 ( ), ,kα β 重新推导各项估计中的指数尺度。 

2. 相关引理 

我们将介绍证明过程所需要的一些相关引理。 
引理 1.1 (Banach 不动点原理) 设 X 是一个 Banach 空间，设 :B X X X X× × × → 是一个 m-线性连

续算子，满足：对 1 2, , , mu u u X∀ ∈ ，有 

( )1 2
1

, , , ,
m

m jX X
j

B u u u K u
=

≤ ∏  

其中常数 0.K > 设 0R > 满足 ( ) 12 1mm R K− < 。那么，对于每一个 y X∈ 且满足 Xy R≤ 的方程 

( ), , , ,u y B u u u= +   

在 X 中存在唯一的解 u ，且该解满足 2Xu R≤ 以及
1X X

mu y
m

≤
−

。此外，解 u 连续依赖于 y，其意义

如下：如果
Xz R≤ 且 ( ), , ,v z B v v v= +  ， 2Xv R≤ ，那么 
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( ) 1

1 .
1 2 mX Xu v y z

m R K−− ≤ −
−

  

下面给出 Besov 空间的等价刻画。 
引理 1.2 [8] Besov 空间 ( ),

s dB R−
∞ ∞
 可以用以下条件描述： 

( ),
0

sup ,
s

s d
t L

t
B R t pαψ ψ ∞

−
∞ ∞

>
∈ ⇔ ∗ < +∞  

其中 tp 是由表达式  ( ) e t
tp

αξξ −= 给出的分数阶热核。 
引理 1.3 将介绍分数阶半群的时间衰减估计。 
引理 1.3 [9]对于分数阶半群 ( )e t θ− −∆

的梯度项，在 ( )p dL R 空间中的时间衰减估计为： 

( )

( ) ( )
1

2e .p d
p d

t
L R

L R
f Ct f

θ
θ

−− −∆∇ ≤  

将引理 1.3 应用到本论文中，可得：  

( ) ( ) ( ) ( )( ) ( ) ( )
2 21 1ek k kt s

t s LL
L

p u u u u C t s u
α

ββ β
α ∞

∞
∞

− − −− − −∆
− ∗ −∆ = −∆ ≤ − . 

引理 1.4 将介绍卷积的 Young 不等式。 
引理 1.4 (卷积的 Young 不等式) 若 ( )p df L R∈ ， ( )q dg L R∈ ，且 

( )1 1 11 1 , , ,p q r
p q r
+ = + ≤ ≤ ∞  

则卷积的范数满足 

.r p qL L Lf g f g∗ ≤  

下面将介绍分数阶热核与分数阶 Laplacian 复合的范数缩放性。 
引理 1.5 [8]设 3d ≥ 为空间维数，则下列范数估计成立： 

( ) ( )2 ,
p

d d
pt s

L

p C t s
η η

α α
+

−
−−∆ = −  

这里的 C 为常数。 

3. 定理 1 的证明 

基于文献[8]所建立的理论框架，本文可通过引理 1 中的 Banach 不动点原理构造问题(1.2)的温和解，

即证明以下三个关键不等式： 

 2
1

, , ,0 1 0 ,k
kt L Bp u C u α β

α β

− − −∞  
∞ ∞

∗ ≤


 (3.1) 

 ( ) ( ) 1,m
locF u Cβ θ−∆ ∈   (3.2) 

 , 0
, ,

30
d .p

k

t
t s FL

p f s C f η
ρ

α β

−
∞− ∗ ≤∫      (3.3) 

接下来，我们依次建立初始数据项、非线性项和外力项的估计。 
证明 对于不等式(3.1)，由引理 1.2 可知， 
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( ) ( )
22

11
0 , 0

0
sup ,kdk

t L
t

u B R t p u
α βα β
α

∞

−− −  −− 
∞ ∞

>
∈ ⇔ ∗ < +∞  

因此得出以下两项范数的等价性： 
2
1

, , ,0 0 ,k
ktB Lu p uα β

α β

− − − ∞ 
∞ ∞

≅ ∗


 

故存在常数C 满足 
2
1

, , ,0 0 .k
kt L Bp u C u α β

α β

− − −∞  
∞ ∞

∗ ≤


 

对于不等式(3.2)，根据 Minkowski 积分不等式和引理 1.3 可得： 

( ) ( ) ( ) ( )
( )

1 1

0 0

2

0

d d

                                             d ,

t tk k
t s t s

LL

t k
L

p u u s p u u s

C t s u s

β β

β
α

∞∞

∞

− −
− −

−

∗ −∆ ≤ ∗ −∆

≤ −

∫ ∫

∫
 

对上述不等式两边同时取 ( )
2

1

0
sup k

t
t
α β
α
−
−

>
，可得 

( ) ( ) ( ) ( )
, ,

2 21 1

0 00
d sup d ,

k

t tk kk
t s LL t

p u u s t C t s u s
α β

α β ββ α α ∞
∞

−
− −−

−
>

∗ −∆ ≤ −∫ ∫  

在上述积分中引入权重 ( )
2

1ks
α β
α
−
−

，并结合 Beta 函数，即 

( ) ( )1
0

d 1 ,1
t a b a bt s s s t B a b− − − −− = − −∫ , 

其中 1, 1a b< < ，因此可以得到 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )
( )

( ) ( ) ( )
( )

, ,

, ,

, ,

2 2 221 1 1 1

0 00

22 2
1 1

00
2 2

1 1

0

d sup , d

sup d   

22sup 1, 1
1

k

k

k

k
t t Lk k k k

t s
L t

k
tk k k

L
t

k k k
L

t

p u u s C t t s s s u s s

C u t t s s s

k
C u t t B

k

α β

α β

α β

α β α β α βββ α α αα

α βα β β
α αα

α β β α
α α α ββ

α α

∞

∞

∞

∞

− − −
−

− −− − −
−

>

−−
−

−− −

>

− −
− −

>

 
 ∗ −∆ ≤ − ⋅
 
 

≤ −

 −
= − + − + − 

∫ ∫

∫

, ,
,

k

k
LC u
α β
∞



=

 

即不等式(3.2)成立。 
这里值得注意的是：由 2 2kβ α β< < 易知上述 Beta 函数的参数均为正数。 
为了结束定理的证明，只需证明不等式(3.3)。 

首先考虑 0
d p
α
< < +∞的情况。设 0p′为 0p 的共轭指数。由 Minkowski 积分不等式可得 

( ) ( )
0 0

, d , d ,
t t

t s t s LL
p f s s p f s s∞

∞− −∗ ⋅ ≤ ∗ ⋅∫ ∫  

根据 Young 卷积不等式以及分数阶拉普拉斯算子的性质，可得 

( ) ( ) ( ) ( )( )
0 0

 
2 2

0 0
, d , d .

p p

t t
t s t s

L L L

p f s s p f s s
η η

∞ ′

−
− −∗ ⋅ ≤ −∆ −∆ ⋅∫ ∫  

根据引理 1.5 中给出的分数阶热核性质，并引入权重 sρ 得到： 
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( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( )

0

0

0

0

0 , 0

 
2

0 0

 
2

0 0

.0

, d , d

d sup ,

C d

p

p

p

dt t
pt s

L L

dt
p

s L

dt
p

F

p f s s C t s s s f s s

C t s s s s f s

t s s s f η
ρ

η η
ρ ρα α

η η
ρ ρα α

η
ρα α

∞

−

− − −−
−

− − −−

>

− − −

∗ ⋅ ≤ − −∆ ⋅

 
≤ − −∆ ⋅ 

 

≤ −

∫ ∫

∫

∫

 

接下来，我们考虑 

( ) ( ) ( )0 0 02
0 0

2
d d d ,

td d dt t
p p ptt s s s t s s s t s s s

η η η
ρ ρ ρα α α α α α

− − − − − −− − −− = − + −∫ ∫ ∫  

对于第一个积分，我们注意到，如果 0
2
ts≤ ≤ ，那么

2
t t s t≤ − ≤ ，所以有 

( ) 0 0

d d
p pt s Ct

η η
α α α α

− − − −

− ≤ . 

如果
2
t s t< ≤ ，所以有 s Ctρ ρ− −≤ 。 

因此，可以得到 

( ) ( )0
0 02

0 0
2

d d d ,
d td dt tpp ptt s s s Ct s s Ct t s s

ηη η
α αρ ρ ρα α α α

− −− − − −− − −− ≤ + −∫ ∫ ∫  

下面讨论一下上述两项积分的可积性，因为
0

2
1

d
p k

β α η−
− − <

−
，所以 

0

1 21 1;
1

d
p k

β αρ η
α
 −

= − + + < − 
 

因为
0

d
p

η α< − ，所以
0

1d
p

η
α α

+ < 。因此，上述两项积分是可积的，经过积分可以得到： 

( ) 0
0

1

0
d .

ddt ppt s s s Ct
ηη ρ

α αρα α
− − −− − −− ≤∫  

由于
0

1 21
1

d
p k

β αρ η
α
 −

= − + + − 
，因此有 ( ) ( )

0

2
1

0
d

dt kpt s s s Ct
β αη

αρα α

−
− − −−− ≤∫ 。 

所以 

( ) ( )
, 0

2
1

0
, d ,p

t k
t s FL

p f s s Ct f η
ρ

β α
α

−
∞

−
−

− ∗ ⋅ ≤∫  

从而得到 

( ) ( ) ( ) , 0
, ,

2
1

0 00
, d sup , d .p

k

t tk
t s t s FL Lt

p f s s t p f s s C f η
ρ

α β

α β
α

−
∞ ∞

−
−

− −
>

∗ ⋅ = ∗ ⋅ ≤∫ ∫  

最后考虑 0p = +∞的情况。由 Minkowski 积分不等式可得 

( ) ( )
0 0

, d , d ,
t t

t s t s LL
p f s s p f s s∞

∞− −∗ ⋅ ≤ ∗ ⋅∫ ∫  

并且根据卷积的 Young 不等式可以得到 
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( ) ( ) ( ) ( )
1

2 2
0 0

, d , d .
t t

t s t s
L L L

p f s s p f s s
η η

∞ ∞

−
− −∗ ⋅ ≤ −∆ −∆ ⋅∫ ∫  

由引理 1.5 给出的分数阶热核的性质，可得 

( ) ( ) ( ) ( )2
0 0

, d , d .
t t

t s
L L

p f s s t s f s s
η η
α

∞ ∞

− −
− ∗ ⋅ ≤ − −∆ ⋅∫ ∫  

现在引入 ,F η
ρ
− ∞ ，得到 

( ) ( ) ( ) ( )( )

( ) ,

2
0 0 0

0

, d d sup ,

d

t t
t s

L s L

t

F

p f s s C t s s s s f s

C t s s s f η
ρ

η η
ρ ρα

η
ρα

∞ ∞

− ∞

− −−
−

>

− −

 
∗ ⋅ ≤ − −∆ ⋅ 

 

≤ −

∫ ∫

∫
 

接下来，考虑 

( ) ( ) ( )2
0 0

2
d d d ,

tt t
tt s s s t s s s t s s s

η η η
ρ ρ ρα α α

− − −− − −− = − + −∫ ∫ ∫  

如果 0
2
ts≤ ≤ ，那么有

2
t t s t≤ − ≤ ，因此得到 ( )t s Ct

η η
α α

− −
− ≤ 。如果

2
t s t< ≤ ，有 s Ctρ ρ− −≤ 成立。综上

可得 

( ) ( )2
0 0

2
d d d .

tt t
tt s s s Ct s s Ct t s s

ηη η
ρ ρ ραα α

−− −− − −− ≤ + −∫ ∫ ∫  

在 0p = +∞的情况下，由于
2

1k
β α η α−

− < <
−

，所以
1 21 1

1k
β αρ η

α
− = − + < − 

且 1η
α
< ，因此上述两个

积分是可积的。 
经过积分得到： 

( )
1

0
d .

t
t s s s Ct

ηη ρρ αα
− − +− −− ≤∫  

由于
1 21

1k
β αρ η

α
− = − + − 

，则 ( ) ( )
2

1

0
d

t kt s s s Ct
β αη

αρα

−
− −−− ≤∫ ，所以 

( ) ( )
,

2
1

0
, d ,

t k
t s FL

p f s s Ct f η
ρ

β α
α

− ∞
∞

−
−

− ∗ ⋅ ≤∫  

从而 

( ) ,
, ,

0
, d .

k

t
t s FL

p f s s C f η
ρ

α β

− ∞
∞− ∗ ⋅ ≤∫  

证毕。 

4. 解的光滑性与衰减行为 

本节将深入讨论由定理一所确立的全局温和解 ( ),u t x 的性质，依次论证该解实际上是经典解并具有

无穷阶光滑性，并刻画其在长时间尺度下的衰减速率。 

4.1. 正则性提升：从温和解到经典解 

定理 2 (光滑性与经典解) 设初始数据 0u 与外力 f 满足定理 1 的小性条件，并设 ( ),u t x 为相应的唯一
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全局温和解，则该解在区域 ( )0, dR∞ × 上无穷次可微，即 ( )( )0, du C R∞∈ ∞ × 。特别地，u 是方程(1.2)在经

典意义下的解。 
证明：由定理 1，解 [ )( ), , 0, d

ku L Rα β
∞∈ +∞ × ，即存在常数 0 0C > ，使得 

 ( ) ( )0
0

2sup ,     .
1Lt

t u t C
k

γ α βγ
α∞

>

−
≤ =

−
   (4.1) 

定义非线性函数 ( ) 1zF z z z−= 。由(4.1)易知，存在常数 1 0C > ，使得对任意 0t > ， 

 ( )( ) 1 .k

L
F u t C t γ

∞
−≤  (4.2) 

分数阶热半群与分数阶拉普拉斯算子复合后具有以下基本平滑估计：对任意 0δ ≥ ，1 p q≤ ≤ ≤ ∞ ，

存在常数 ( ), , , , 0C C d p qα δ= > ，使得 

 ( ) ( ) 2
1 1

e ,     0.p

q

d
t p q

L

L

Ct t
α δ

δ α αϕ ϕ
 

− − − − −∆  −∆ ≤ ∀ >  (4.3) 

考虑解的积分表达式： 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )
2 2 2

0 0 0
e e d e d .

t tt t s t su t u F u s s f s s
α α α

β− −∆ − − −∆ − − −∆= + −∆ +∫ ∫  (4.4) 

固定 0 τ< < Γ，对任意 t tτ ′≤ < ≤ Γ，我们估计 ( ) ( )u t u t′− 的 L∞范数。 
对于非线性项部分的差，我们将其分解为两项： 

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )

2 2

2 2 2

0 0

0

e d e d

e d e e d .

t tt s t s

L

t tt s t s t s

t
L L

F u s s F u s s

F u s s F u s s

α α

α α α

β β

β β

∞

∞ ∞

′ ′− − −∆ − − −∆

′ ′− − −∆ − − −∆ − − −∆

′

−∆ − −∆

 
 ≤ −∆ + − −∆
 
 

∫ ∫

∫ ∫

 

对于第一项，利用(4.2)和(4.3)，有 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )
2

1e d d d .

L

t t tt s k
t t tL

F u s s C t s F u s s CC t s s s
α

ββ β α γα
∞

∞

− −− − −∆ −
′ ′ ′

−∆ ≤ − ≤ −∫ ∫ ∫  

由于在区间 [ ] [ ], ,t t τ′ ⊂ Γ 上，函数 ks γ− 有界(因 0τ > )，且 1β α < (由定理 1 条件 2α β> 可得)，因此

该积分可被
1C t t

β
α

−′− 控制。 
对于第二项，利用热半群算子的强连续性及其在 L∞上的范数估计(同样基于(4.3))，可以证明存在常

数 ( )0,1θ ∈ ，使得该项不超过C t t θ′− 。 
综合线性项(显然光滑)和非线性项的估计，我们得到存在常数 ( )0,1θ ∈ ，使得对任意 tτ ′≤ ， t ≤ Γ及

, dx y R∈ ， ( ) ( ) ( ), ,u t x u t y C t t x yθ θ′ ′− ≤ − + − ，因此， ( )( )0, d
locu C Rθ∈ ∞ × 。 

假设已证明 ( )( ), 0,m d
locu C Rθ∈ ∞ × ( )0,0 1m θ≥ < < 。由于 ( )F z 是实解析函数，根据复合函数的正则性

理论， ( ) ,m
locF u C θ∈ 。进而，利用分数阶拉普拉斯算子 ( )β−∆ 在 Hölder 空间中的正则性提升性质，我们有，

( ) ( ) 1,m
locF u Cβ θ−∆ ∈ ，其中 1 2θ θ β= + 。将此代入积分方程(4.4)，并再次应用热半群的平滑估计(4.3)，可推

得 21,m
locu C θ+∈ ，其中 2θ 为某个新的 Hölder 指数。通过有限次这样的迭代，我们可以证明 u 具有任意阶的

连续导数，即 ( )( )0, du C R∞∈ ∞ × 。 
由于 u 无穷可微，我们可以直接对积分方程(4.4)两边关于时间 t 求导。利用热半群的性质和 u 的光
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滑性，可以逐项验证 u 满足方程(1.2)的每一项定义，且等式在经典意义下成立。同时，初值条件 ( ) 00u u=

在温和解的定义下成立，结合 u 在 0t = 附近的连续性，可知其亦为经典初值条件。因此，u 是方程(1.2)
的经典解。 

4.2. 长时间衰减行为及其与线性衰减的对比 

接下来，我们精确刻画解的长时间渐近行为，并将其与对应的线性方程的衰减速率进行对比。 
定理 3 (衰减速率) 在定理 1 的条件下，存在常数 0C > ，使得相应的全局温和解 ( ),u t x 满足如下衰

减估计： ( ) ( ) , 0dL R
u t Ct tγ

∞
−≤ ∀ > ，其中

( )
2

1k
α βγ
α

−
=

−
。此衰减率是最优的。 

证明：该结论是解属于空间 [ )( ), , 0, d
kL Rα β

∞ +∞ × 的直接推论。由该空间范数定义， 

( )
, , 0

sup .
kL Lt

u t u t
α β

γ
∞ ∞

>
=  

根据定理 1，
, ,kLu

α β
∞ < ∞。因此，对任意 0t > ，有 ( )

, ,kLL
t u t u

α β

γ
∞∞ ≤ 。令

, ,kLC u
α β
∞= ，即得估计式

( ) ( ) , 0dL R
u t Ct tγ

∞
−≤ ∀ > 。最优性是指，若衰减速率快于 t γ− ，则解将属于一个更“小”的空间，但这通常

需要更强的初值条件；而 t γ− 是匹配初值空间 ( )
2
1

,
dkB R

α β− − − 
∞ ∞


的自然衰减率。 

与线性衰减的对比分析： 

考虑线性初值问题 ( ) 2 0t v v
α

∂ + −∆ = ， ( ) 00v u= 。当初始数据 0u 属于相同的齐次 Besov 空间

( )
2
1

,
dkB R

α β− − − 
∞ ∞
 时，其解 ( ) ( ) 2

0e tv t u
α

− −∆= 满足完全相同的衰减估计：存在常数 0C′ > ，使得 

( ) , 0.
L

v t C t tγ
∞

−′≤ >  

这一事实是分数阶热半群衰减估计的直接结果，也体现了 Besov 空间在刻画这类尺度不变问题中的

自然性。 

5. 结论 

本文聚焦传统分数阶半线性抛物方程因参数固化导致适用场景受限的不足，围绕“模型泛化–适定

性分析”的核心脉络，开展了广义化模型的构建与理论研究。研究以 Diego Chamorro 与 Maxence Mansais 
[8]提出的分数阶流体动力学方程为原型，在保留其非线性项核心结构的基础上，通过引入可调参数实现

了模型的泛化拓展，突破了传统模型仅能刻画特定分数阶扩散行为的局限。本文在临界空间 

[ )( ), , 0, d
kL Rα β

∞ +∞ × 中，明确了初始数据与外力项范数小性约束下，广义模型全局温和解的存在唯一性。

这一结果完善了分数阶抛物方程在临界空间中的适定性理论。 
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