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Abstract

This paper studies a class of delayed SIR models with a saturated incidence rate. By introducing the
saturated incidence rate, the model conforms to the real-world law that the transmission speed
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slows down when the number of infections grows to a certain level, thereby making the model more
consistent with practical scenarios. Firstly, taking time delay as a parameter, the basic reproduction
number Ro of the model is calculated using the next-generation matrix method. Subsequently, the
characteristic equations at the disease-free equilibrium point and the endemic equilibrium point
are analyzed via linearization, characteristic theory, and other methods, leading to the derivation
of the influence of time delay on the stability of these two equilibrium points: when Ro < 1, the dis-
ease-free equilibrium point is asymptotically stable within a certain range of time delay; when Ro >
1, the endemic equilibrium point varies with changes in time delay, and the existence condition for
Hopf bifurcation at the endemic equilibrium point is provided. Finally, numerical simulations are
performed using MATLAB to verify the correctness of the theoretical results, confirming that time
delay can alter the stability of the system.
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Figure 1. Temporal dynamics of the normalized infected and recovered individuals
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Figure 2. Dynamics of infected and recovered individuals after non-dimensionalization
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