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摘  要 

本文采用复加权估计方法对带跳随机波动率模型进行非参数估计，并通过引入门限函数去除跳的影响。

该方法既继承了局部线性估计量优良的偏差特性，又能在有限样本条件下保证对扩散系数的估计值非负。

理论分析表明，温和条件下本文构造的估计量具有相合性和渐近正态性。 
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Abstract 
In this paper, the Reweighted Nadaraya-Watson estimation method is adopted for the nonparamet-
ric estimation of the stochastic volatility model with jumps, and the impact of jumps is eliminated 
by introducing a threshold function. This method not only inherits the excellent bias property of the 
local linear estimation, but also ensures the nonnegativity of the estimated value of the diffusion 
coefficient under finite sample conditions. Theoretical analysis shows that the estimator constructed 
in this paper is consistent and asymptotically normal under mild conditions. 
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1. 引言 

期权定价作为金融市场中的重要工具，一直都是统计学家和金融从业者所关注的重点。Black 和

Scholes [1]建立了著名的 Black-Scholes 期权定价模型，这一模型为金融衍生品定价理论的发展奠定了坚

实基础，引发了大量相关研究[2]-[4]。但是，Black-Scholes 期权定价模型存在一定局限性，它认为标的资

产的波动率是恒定不变的，这与金融市场中波动率显著的随机性相悖。随机波动率模型将波动率看作随

机过程，并假定波动率是由 Brown 运动驱动的伊藤过程，能够更好地捕捉股票和期权价格行为的特征，

因此受到了学者的广泛关注。 
在当前背景下，准确识别随机波动率模型中的参数及其函数形式，对于资产定价与风险管理而言，

具有极其关键的意义，因此有许多学者对这方面做了大量研究。在参数估计方面，Abanto-Valle、Carlos
和 Rodríguez 等[5]提出了一种基于隐马尔可夫模型和重要性抽样的快速近似贝叶斯方法来估计均值–随

机波动率模型，在保证精度的同时大幅度提高计算效率，并通过多国股市数据证实了波动率对收益的显

著负向反馈效应；Ibrahim 和 Afif [6]提出了一类新的随机波动率模型，该模型中资产价格收益率的扩散

项由平移复合泊松分布得到，并通过贝叶斯估计方法对模型参数进行估计。Bégin 和 Boudreault [7]发现

带跳随机波动率模型中金融收益的高阶矩，难以通过最大似然估计方法进行拟合，进而提出一种融合矩

条件的稳健最大似然估计方法，并通过大规模仿真与实证证明其在提升金融风险度量准确性方面显著优

于标准最大似然估计方法。在非参数估计方面，Renò [8]采用非参数估计方法对随机波动率模型的扩散函

数进行估计；Bandi 和 Phillips [9]提出了一种基于离散观测数据的完全非参数估计方法，利用局部时和核

平滑技术构建了扩散过程的漂移函数和扩散函数的非参数估计量；Kanaya 和 Kristensen [10]提出一种两

步非参数估计方法来估计随机波动率模型，该方法可以有效处理资产价格过程中包含的跳跃和市场微观

结构噪声。 
就参数估计方法而言，非参数估计方法具有无需预设分布形式，以及对异常值具有较强鲁棒性等优

点，吸引了众多研究者的关注。Xu [11]最早提出使用非参数方法中的复加权估计方法估计扩散过程的扩

散函数，旨在通过复加权的方式构造即能解决非参数估计方法中的局部常数估计存在的边界偏差较大的

问题，又能解决用非参数估计方法中的局部线性估计方法对扩散函数进行拟合时可能会产生负值的情况，

其基本思想是通过最小限度地调整局部常数估计量，使其符合局部线性估计量满足的离散偏差减少的条

件，从而保留了局部线性估计中的偏差性质，又确保对每个样本点赋予非负的权重。Ji 和 Zhu [12]通过未

观测到的波动率过程的门限估计量，建立了随机波动率模型中波动率过程无穷小矩的复加权 Nadaraya-
Watson 估计量，并通过蒙特卡洛模拟研究了估计量在有限样本下的表现；Hanif [13]利用复加权 Nadaraya-
Watson 方法对潜在跳跃扩散模型的二阶无穷小矩进行非参数估计，并且证明了基于复加权 Nadaraya-Wat-
son 估计量所得的连续时间模型二阶无穷小矩估计量具有强相合性与渐近正态性；宋坤洋[14]使用加门限

的方法去除跳的影响，对带跳扩散模型中的扩散项进行了复加权估计，并使用稳定收敛定理证明了估计
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量的大样本性质。 
波动率作为衡量资产价格不确定性的核心指标，其准确度量对期权定价具有重要意义，在随机波动

率模型中，扩散函数刻画了波动率的动态变化，所以对扩散函数进行准确估计，是把随机波动率模型运

用到实际当中的必要前提。因此，本文主要对随机波动率模型中的扩散函数进行非参数复加权估计。 
论文的其余部分安排如下：第二节介绍本文使用的模型以及随机波动率模型的扩散函数的复加权估

计量的构造，第三节给出了本文的主要结果以及针对模型和定理的适当假设条件，相关的引理和主要结

果的证明在第四节，第五节是总结。 

2. 复加权估计量的构造 

本文主要讨论如下随机波动率模型，该模型中加入了跳的行为，更符合金融市场的情况： 
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( ) ( )
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d d d d
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t t t t t
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其中，{ } ( ) ( ){ }2 1 2 2 2 1d ,d d 1 d ,dX
t t t t t t tW W W W Wσ ρ σ ρ σ= + − ， ( )1 1ρ− ≤ ⋅ ≤ ，{ }1 2,t tW W 独立的标准布朗运动，

{ },X
t tJ J σ 是相互独立，且与{ },X

t tW W σ 独立的复合泊松跳过程，其中 1
tN

lltJ σ γ
=

= ∑ ， tN 是强度函数为 ( )σλ ⋅

的泊松过程且与 tW σ 相互独立，{ } 1,2,l l
γ

= 

是独立同分布的标准高斯变量。{ }tµ 和{ }2
tσ 是两个随机过程，

{ }2
tσ 通常用来衡量资产价格的波动性， ( )α ⋅ 和 ( )2β ⋅ 分别表示波动率的漂移函数和扩散函数。 

在模型(1)中，由于市场微观结构等因素的影响，我们只能获得有噪声污染的观测值。即我们实际观

测到的是{ }tY ， t t tY X ε= + ，其中 tX 为资产价格， tε 表示测量误差。我们假设{ }tY 在时间区间 [ ]0,T 上的

离散观测为{ }, 1, ,iY i N=


 ，其中 T N∆ = 为观测的时间间隔。由 Bandi 和 Renò [15]提出的方法可知，

当波动率过程{ }2
tσ 不包含跳，即 0tJ σ = 时，扩散函数 ( )2 xβ 满足如下方程： 

 ( )( )
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当 0tJ σ ≠ 时，往往会有 
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，  

这里超过 ( )2β ⋅ 的部分，便是跳带来的影响。为了消除跳的影响，我们采用加门限的方法对高频金融数据

中“跳跃”与“连续扩散成分”进行有效分离，即在处理
( )( )22 2

1 iiσ σ ∆+ ∆ −

∆
时，先用门限函数 ( )Δϑ 进行 

筛选，在极短时间间隔内，若波动率变动超过 ( )Δϑ ，则认为是由跳跃引起的，否则可视为纯扩散行为。

基于这一判断，可以剔除跳跃干扰，仅利用连续路径片段来估计扩散函数，读者可以参考文献[16]和[17]
了解有关门限函数的具体细节。 

在实际市场中，我们无法观测到波动率过程{ }2
tσ ，仅能观测到{ }tY ，因此我们需要先对波动率过程

{ }2
tσ 进行估计，再通过波动率的估计量 2ˆtσ 去构造扩散系数的加门限的复加权估计量。有很多学者对 2

tσ

的估计做了大量研究，例如 Renò [8]、Kristensen [18]和 Mancicin [19]等，为了建立一个涵盖所有估计量

https://doi.org/10.12677/pm.2026.162033


冯坚，王允艳 
 

 

DOI: 10.12677/pm.2026.162033 42 理论数学 
 

的一般性结果，我们不局限于瞬时波动率 2
iσ ∆ 的估计量的具体形式，而是仅假设所选的估计量 2ˆiσ ∆ 满足如

下条件： 

 ( )2 2

1
ˆmax ,i i p Ni n

O Nσ σ ϑ∆ ∆≤ ≤
− = → ∞  (3) 

其中， 0Nϑ → 表示误差限。这一约束条件保证了即使我们使用估计的波动率代替实际的波动率，也不会

破坏本文所提出的扩散函数 ( )2β ⋅ 的估计量的渐近性质。 

令
( )( )( )2

!

j

j

x
a

j

β
= ， 0,1, ,j p=  ，并且选取 ja 使得如下的加权和达到最小： 
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其中， ( )
2 2 2

1ˆ ˆΔ ˆi iiσ σ σ ∆+ ∆= − ， ( )⋅ 表示核函数，h 表示光滑带宽。借助方程(2)，在上式中令 0p = 和 1p =

分别可得扩散函数的门限局部常数(Nadaraya-Watson)和门限局部线性估计量如下： 
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其中 ( )
2 2 2

1ˆ ˆΔ ˆi iiσ σ σ ∆+ ∆= − 。 
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其中， ( ) ( )h h h⋅ = ⋅  ，且 

( )2
2 1ˆLL

i n i nw S x Sσ ∆= − − ， 

( ) ( )2 2

1
, 1, 2ˆ ˆ

N j

nj i h i
i

S x x jσ σ∆ ∆
=

= − − =∑  。 

显然，局部线性估计量中的权重 LL
iw 不能保证非负性，因此对具有非负性的扩散函数的估计，其结果

可能出现负值。为了吸收局部线性估计量在边界偏差中的优势，同时保持估计值的非负性，我们定义扩

散函数 ( )2β ⋅ 的非参数门限复加权估计量如下： 
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其中，权重 ( ){ }, 1,ˆ 2, ,iw x i N=  可由如下约束优化问题求解： 
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( )
ˆ 1

1max log ,ˆ
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N
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约束条件为： 

 1 1, 0,ˆ ˆN
i ii w w

=
= ≥∑  (6) 

 ( ) ( )2 2
1

ˆ ˆ 0ˆ .N
i i h ii w x xσ σ∆ ∆=

− − =∑   (7) 

注 1. 局部线性估计量的权重自动满足条件(7)，也正是因为条件(7)使局部线性估计量具有偏差减小

和修正边界的良好性质。事实上，如果没有条件(7)，那么满足约束条件(6)的优化问题(5)的解会直接退化

为简单的均匀权重，即 ( )ˆ , 1iw x h N= ，我们的估计量也退化成局部常数估计量，丧失了局部线性拟合的

优势，详细介绍参考文献 Xu [11]。 
利用拉格朗日乘子法可求解上述约束优化问题。对应的拉格朗日函数为： 

 ( ) ( ) ( ) ( )2 2
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其中 γ ， λ 为拉格朗日乘子。对关于 ˆ iw ， γ 和 λ 求一阶导可得： 
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进而可得： 
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其中 λ 满足： 
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上式左侧是关于 λ 的严格递减函数，可以通过牛顿迭代方法求解 λ 。 

3. 主要结果 

本文的主要结果都是建立在如下条件上的。 
条件 A1 (核函数)。(a) 核函数 ( )⋅ 是定义在 + 上具有紧支撑的连续可导、对称和有界的概率密度

函数，且满足如下条件： 

( )2
0

d 1x x x
∞

=∫  ， ( )2
0

dx x
∞

< ∞∫  ， ( ) 2

0
dx x

∞
′ < ∞∫  ； 

(b) 存在常数 ( )0,K ∈ ∞ ，使得 ( )sup x K′ ≤ 。 
条件 A2 (波动率过程)。波动率过程{ }2

tσ 的状态空间为 ( )0,I σ= ，其中σ ≤ ∞，且满足： 
(a) ( )α ⋅ 和 ( )2β ⋅ 在 I 上二阶连续可微，且 ( )2 0xβ > 对所有 x I∈ 成立，存在常数 0M > ，使得对所

有 x I∈ ，有 ( ) ( ) ( )1x x M xα β+ ≤ + ； 
(b) 强度函数 ( )σλ ⋅ 在 I 上局部 Lipschitz 连续且有界，即 ( )supx I xσλ∈ < ∞； 
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(c) 波动率过程{ }2
tσ 是 Harris 正常返的马尔可夫过程； 

(d) 初始波动率 2
0σ 服从唯一不变分布 ( )π ⋅ ，即 ( )2

0 ~σ π ⋅ 。 
注 2. 条件 A2(a)~(b)确保波动率过程{ }2

tσ 存在全局唯一强解；条件 A2(c)确保该过程具有唯一不变

分布 ( )π ⋅ 且是遍历的，条件 A2 确保{ }2
tσ 是平稳遍历过程。 

条件 A3 (矩条件)。(a) 存在常数 2q > ，使得 4
tE σ  < ∞  ， ( )2 q

tE α σ 
  

< ∞， ( )2 q

tE β σ 
  

< ∞； 

(b) 存在常数 0λ > ， 0ρ > 和 0C > ，使得 ( ) 12 2
t tE C t s

λ ρσ σ +− ≤ − 对所有 , 0t s ≥ 成立。 

条件 A4 (门限函数)。当 0∆ → 时， ( )Δϑ 和 ( )1ln ϑ ∆ ∆ ∆ 
同时趋向于 0，并且满足如下条件： 

( )( )2 oγ ϑ∆ = ∆ ，
( )
1

0N
γ ϑ
ϑ

−∆
→

∆
，

( )
1 2

0Nϑ
ϑ

−∆
→

∆
。 

条件 A5 (正则条件)。对于(3)中的误差限 Nϑ 以及 ( )0,γ ρ λ∈ ，其中 ρ 和 λ 来自条件 A3，我们做出如

下假设： 
(a) 1 0N

γϑ −∆ → ， 0hγ∆ → ，且 Nh →∞； 
(b) ( )1 2 2 0N N h h γϑ − − ++ ∆ → ， ( )5 1Nh O→ 且 2 0Nh γ∆ → 。 
注 3. 条件 A5 是推导本文提出的复加权估计量渐近性质的正则条件。假设中涉及 Nϑ 的部分是为了

确保第一阶段对波动率过程{ }2
tσ 进行估计时产生的误差不会影响复加权估计量的渐近性质，关于这部分

条件的技术理论可以参考 Kanaya 和 Kristensen [10]。条件 A5 中不涉及 Nϑ 的部分与 Bandi 和 Phillips [9]
对平稳扩散过程非参数估计中的假设相似。 

接下来给出本文提出的扩散函数的门限复加权估计量 ( )2ˆ
TRNW xβ 的相合性和渐近正态性。 

定理 1 若条件 A1~A5(a)成立，则对任意 x I∈ ，有 

( ) ( )2 2ˆ P

TRNW x xβ β→ 。 

若进一步满足条件 A5(b)，那么 

( ) ( ) ( )
( )

4
22 2ˆ 4

0,
d

TRNW

x
Nh x x N

x
β

β β
π

 
 − →     

 


， 

其中 ( )2
2 du u= ∫  。 

注 4. 估计偏差 ( ) ( )2 2ˆ
TRNW x xβ β− 可分解为： 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2ˆ ˆ
TRNW TRNW TRNW TRNWx x x x x xβ β β β β β   − = − + −  

   (8) 

其中，第一部分 ( ) ( )2 2ˆ
TRNW TRNWx xβ β−  是由第一步对波动率过程{ }2

tσ 的估计产生的误差，第二部分 

( ) ( )2 2
TRNW x xβ β− 是基于实际估计过程的估计量抽样误差导致的，且 

( )
( ) ( )( )

( ) ( )

( )

22

2

22 2
1

Δ Δ
2

1

2
1

i

N
i h

ii

TR

ii

N
i h i

W

i

N

w x I

x
x

w

σ ϑ
σ

σ

σ σ

β

∆

∆=

∆=

+ ∆

 
≤ 

 

−
−

∆
=

−

∑

∑





， 

为基于真实的 2
tσ 的扩散函数的门限复加权估计量。其中， ( )

2 2 2
1Δi iiσ σ σ ∆+ ∆= − ，且权重 

( ){ }, 1, 2, ,iw x i N=  满足 
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{ }

( )1

1max log
i

N
iiw

Nw
N =∑   

使得 

 1 1, 0N
i ii w w

=
= ≥∑ ，  

 ( ) ( )2 2
1 0N

i i h ii w x xσ σ∆ ∆=
− − =∑  ，  

利用宋坤洋[14]中的结论，可以得到 ( )2
TRNW xβ 的相合性和渐近正态性，因此等式(8)右边第一项 

( ) ( )2 2ˆ
TRNW TRNWx xβ β−  的大样本性质是证明定理 1 的关键。 

4. 引理和证明 

本节将给出证明定理需要的引理，并给出主要结果的证明。 
引理 1 (Kanaya 和 Kristensen [10])若条件 A3(b)成立，则对任意的 ( )0,γ ρ λ∈ ，存在常数 0D > ，使

得 

( )
( )( ) [ )

( ) ( )2 2

1, ; , 0,
Pr | s.t. sup 1t s

t s s t
D

t s γ
ω

σ ω σ ω
ω ω

− ∈ ∆ ∈ ∞

 −
 ∈Ω ∃∆ ≤ =
 − 

。 

引理 2 假设条件 A1~A5(a)成立，且存在常数 0q > ，使得 ( ) ( )q
N h O hϑ = 。若当 N →∞时， 0h → ，

0∆ → ，且 1 0N
γϑ −∆ → 时，则有 

( ) ( ) ( ) ( )2 2 1ˆ
TRNW TRNW P N P Nx x O h O γβ β ϑ ϑ −− = + ∆ 。 

引理 2 的证明：令 

 

( ) ( )( )
( ) ( )

( )

( ) ( )( )
( ) ( )

( )

22

22

22 2
12

1

1
2

1

22 2
12

1

Δ

Δ Δ

1

Δ

2

1

1 ˆ ˆ

1

        ;
1

i

i

iiN
i h ii

N
i h ii

iiN
i h ii

N
i h ii

w x I
N

B
w x

N

w x I
N

w x
N

σ ϑ

σ ϑ

σ σ
σ

σ

σ σ
σ

σ

∆+ ∆

∆=  
≤ 

 

 
≤ 

∆=

∆+ ∆

∆=

 

∆=

−
−

∆
=

−

−
−

∆
−

−

∑

∑

∑

∑









  

 

( ) ( )( )
( ) ( )

( )

( ) ( )( )
( ) ( )

( )

22

22

22 2
12

1

2
2

1

22 2
12

Δ Δ

Δ Δ1

2
1

1 ˆ ˆ

1 ˆ ˆ

1

         ;
1 ˆ ˆ

i

i

iiN
i h ii

N
i h ii

iiN
i h ii

N
i h ii

w x I
N

B
w x

N

w x I
N

w x
N

σ ϑ

σ ϑ

σ σ
σ

σ

σ σ
σ

σ

∆+ ∆

∆=

∆=

∆+ ∆

∆=

 
≤

∆=


 

 
≤ 

 

−
−

∆
=

−

−
−

∆
−

−

∑

∑

∑

∑








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( ) ( )( )
( ) ( )

( )

( ) ( )( )
( ) ( )

( )

22

22

22 2
12

1 ˆ

3
2

1

22 2
1

Δ Δ

Δ Δ

2
1

2
1

1 ˆ ˆ

1 ˆ ˆ

1 ˆ ˆ

        ;
1 ˆ ˆ

i

i

iiN
i h ii

N
i h ii

iiN
i h ii

N
i h ii

w x I
N

B
w x

N

w x I
N

w x
N

σ ϑ

σ ϑ

σ σ
σ

σ

σ σ
σ

σ

 
≤ 

 

 
≤ 

 

∆+ ∆

∆=

∆=

∆+ ∆

∆=

∆=

−
−

∆
=

−

−
−

∆
−

−

∑

∑

∑

∑









  

则有 

( ) ( )2 2
1 2 3

ˆ
TRNW TRNWx x B B Bβ β− = + + 。 

接下来，分别分析 1B ， 2B 和 3B 的收敛性。首先考虑 1B ，通分得 

 

( ) ( )( )
( ) ( )

( ) ( )

( ) ( )

22

22 2
12

1

1
2 2

1 1

2

Δ

2

Δ

1

1

1 1ˆ ˆ

1 ˆ ˆ        ,

i

iiN
i h ii

N N
i h i i h ii i

N
i h i i h ii

w x I
N

B
w x w x

N N

w x w x
N

σ ϑ

σ σ
σ

σ σ

σ σ

 
≤

∆+ ∆

∆=

∆ ∆= =

∆




=



∆



−
−

∆
=

− × −

 × − − − 

∑

∑ ∑

∑



 

 

  

由宋坤洋[14]和 Xu [11]可得： 

 ( ) ( )( )
( ) ( )

( ) ( ) ( )22

22 2
1

Δ

2

Δ

2
1

1 1
i

iiN
i h i Pi w x I x x o

N σ ϑ

σ σ
σ β π

∆+


≤ 

∆



∆

=



−
− = +

∆∑   (9) 

 ( ) ( ) ( )2
1

1 1N
i h i Pi w x x o

N
σ π∆=

− = +∑   (10) 

 ( )( ) ( )2
1

1 ˆ ˆ 1N
h i i i Pi x w w o

N
σ ∆=

− − =∑   (11) 

由条件 A(1)可知，存在函数 ∗ 和 0ε > ，使得 

 
( )2 2

sup i i
x x

h hε ε

σ σ
ε∆ ∆

≤
∗

− −
+ ≤

′
 ，  

∗ 和 ε 的存在性可参考文献 Kanaya 和 Kristensen [10]中 Theorem 3.1 的证明，由于波动率过程{ }2
tσ 是平

稳的以及 ∗ 的性质，所以有 

( )
2

1

1 1 1N i
Pi

x
O

N h h
σ

=
∗ ∆ −

= 
 

∑  ， 

再结合 
2 2ˆi i i N

PO
h h

ξ σ σ ϑ∆ ∆−  =  
 

，其中 [ ]0,1iξ ∈ ， 

用 Kanaya 和 Kristensen [10]中证明(B.13)类似的证明方法，可以得到 
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( ) ( )

[ ]

2 2

2 2
1

2 2 2 2 2

1

2 2 2 2 2

1 ˆ1

2

1 ˆ

ˆ ˆ1 1 , 0,1

ˆ ˆ1 1sup

1 1

i i
i

N
i h i h ii

N i i i i i
i i ii

Ni i i i i
ii

i N
h

i

w x x
N

x
w

N h h h h

x
I

h N h h h

x
N h h

σ σ
ξ ε

σ σ

σ σ σ σ σ
ξ ξ

σ σ σ σ σ
ξ

σ

∆ ∆

∆ ∆=

∆ ∆ ∆ ∆ ∆
=

∆ ∆ ∆ ∆ ∆
 = −≤ ≤  ≤ 
 
 

∆

 − − − 

 − − −′= × − × ∈ 
 


  − − − ′≤ × − 

 


−′+

∑

∑

∑

其中

 







( )
( )

2 2

2 2

1 ˆ

2 2 1
2

1
1 1

1

ˆ

ˆsup1 1 1

1

i i
i

N i i
ii

h

q

i i iN NN i i N
P i i

q

P NN
P P

I
h

hx KO
h N h h N h

O hKO O
h h

O

σ σ
ξ ε

σ σ
ξ

ξ σ σϑ σ
ε

ϑϑ
ε

∆ ∆

∆ ∆
 = − > 
 
 

−
∆ ∆

∗ ∆ ≤ ≤
= =

−


 − −  

  


  −  −   ≤ × + ×             
      = × + ×         

=

∑

∑ ∑

( )

( ) ( )

11

11

,

q
N N

P P P

N
P P P

N
P

O O
h h h

O O O h
h h

O
h

ϑ ϑ

ϑ

ϑ

      × + ×             
   = × + ×     
 =  
 

 

所以 

 

( ) ( )

( ) ( ) ( )( )

( )

2 2
1

2 2 2
1 1

1 ˆ ˆ

1 1ˆ ˆ ˆ

1

,

N
i h i i h ii

N N
i h i h i h i i ii i

N
P P

N
P

w x w x
N

w x x x w w
N N

O o
h

O
h

σ σ

σ σ σ

ϑ

ϑ

∆ ∆=

∆ ∆ ∆= =

 − − − 

 = − − − + − − 

 = + 
 
 =  
 

∑

∑ ∑

 

  
 (12) 

由(10)和(12)可得 

 ( ) ( ) ( )2
1

1 ˆ ˆ 1N
i h i pi w x x o

N
σ π∆=

− = +∑   (13) 

由(9) (10) (12)和(13)，我们有 ( )1 P NB O hϑ= 。 
下面证明 2B 的收敛性。已知 

( ) ( ) ( )( )
( ) ( )

( )

22

22 2
12 2

1

2

Δ Δ

2
1

1 ˆ ˆ

1 ˆ ˆ

i

iiN
i h i i h ii

N
i h ii

w x w x I
N

B
w x

N

σ ϑ

σ σ
σ σ

σ

∆+ ∆

∆ ∆=

∆=

 
≤ 

 

−
 − − −  ∆

=
−

∑

∑

 


， 
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由引理 1 知 

 ( ) ( )2 2
Δ . .1 Δ

1
sup Δi a si

i N
O γσ σ+

≤ ≤
− =  (14) 

再结合 

( )
1

ˆmax i i P Ni N
w w O ϑ

≤ ≤
− = ， 

有 

 

( ) ( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

( ) ( )( )

( )
( )

( )

( )
( )( )

( )

22

22

22 2
12

1

22 2
12

1

Δ Δ

Δ Δ

22 2
12

11

2
. .

2 1

1 2 1

1 ˆ ˆ

1 ˆ ˆ

1ˆ ˆmax

1

i

i

iiN
i i h ii

iiN
i i h ii

iiN
i i h iii N

a s
P N P

P N

P

P

w w x I
N

w w x I
N

w w x
N

O
O O

O

O o

o

σ ϑ

γ

γ

γ γ

γ

σ ϑ

σ σ
σ

σ σ
σ

σ σ
σ

ϑ

ϑ

 
≤ 

 

 
≤ 

∆+ ∆

∆=

∆+ ∆

∆

 

=

∆+ ∆

∆=≤ ≤

−

− −

−
 − −  ∆

−
≤ − × − ×

∆

−
≤ − × −

∆
∆

= × ×
∆

= ∆

= ∆ ×∆

= ∆

∑

∑

∑







( )1 .Po=

  

运用中值定理和 Kanaya 和 Kristensen [10]中(B.13)类似的方法，以及 

( )( )
( )

22 2
1

1

1 1
Δ

iiN
Pi O

N

σ σ ∆+ ∆

=

−
=∑ ， 

 
( )( )

( )
22 22

1

1

1 1 1
Δ

iiN i
Pi

x
O

N h h

σ σσ ∆+ ∆∗ ∆
=

− −
= 

 
∑    

我们可以得到如下结果 

 

( ) ( ) ( )( )
( ) ( )

( )( )

( )( )

( )

22

22 2
12 2

1 Δ Δ

22 22
1

1

22 2 1 2 2
11

1

1 ˆ

1 1

ˆsup1

1

i

iiN
i h i h ii

iiNN i
P i

q

i i i iiN i N
i

PN
P P

w x x I
N

x
O

h N h h

hK
N h

OKO O
h h

σ ϑ

σ σ
σ σ

σ σϑ σ

ξ σ σ σ σ

ε

ϑ

∆+ ∆

∆ ∆  = ≤ 
 

∆+ ∆∗ ∆
=

−
∆ ∆ ∆+ ∆≤ ≤

=

−
 − − −  ∆

 − −  ≤ ×    ∆   


 − −  + ×   ∆    

 = × + × 
 

∑

∑

∑

 



( )1

,

q

N N
P

h
O

h

ϑ ϑ
ε

−       =         
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所以 2B 的分子部分 

 

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )( )
( ) ( )
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( ) ( )
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σ σ
σ σ

ϑ

ϑ

∆+ ∆

∆ ∆=
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∆ ∆
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 

 
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 



 
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≤ 
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 − − −  ∆

−
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−
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=

∑

∑

∑

 



 

, 
 

  

又因为 2B 的分母部分满足式(13)，所以有 ( )2 P NB O hϑ= 。 
最后证明 3B 的收敛性。已知 
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( )( ) ( ) ( ) ( )( ) ( ) ( )
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2 22 2ˆ
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2 22 2 2 2
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3
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N

B
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σ σ σ σ
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σ

∆ ∆+ ∆ + ∆   
≤ ≤   

  
∆=



∆=

 − − − 
 
 ∆
 
 =

−

−



∑

∑




， 

由 Kanaya 和 Kristensen [10]中(B.20)可知 

 ( )( ) ( )( ) ( ) ( ) ( )2 22 2 2 2 2
. .1 1

1
su ˆp ˆi i P N P N a si i

i N
O O O γσ σ σ σ ϑ ϑ∆ ∆+ ∆ + ∆

≤ ≤
− − − = + × ∆ ， (15) 

令 ( )( ) ( ){ }22 2
1ˆ ˆi iiE σ σ ϑ∆+ ∆= − ≤ ∆ ， ( )( ) ( ){ }22 2

1i iiF σ σ ϑ∆+ ∆= − ≤ ∆ ，由式(14)可知 

 ( )( ) ( )22 2 2
Δ . .1 Δ Δi a si O γσ σ+ − =  (16) 

结合 ( )( )2 oγ ϑ∆ = ∆ ，则几乎必然有 ( )( ) ( )
22 2

Δ1 Δ iiσ σ ϑ+ − ≤ ∆ ，因此对任何 i ，有 

( ) ( )
2

2 2
1

1
i

ii

FI I
σ σ ϑ∆+ ∆

   − ≤ ∆     

= = ， 

因此当且仅当事件 c
i iE F 发生时，才使得 1

i iE FI I− = ，即 

( )( ) ( )
22 2

1ˆ ˆiiσ σ ϑ∆+ ∆ − > ∆ 且 ( )( ) ( )
22 2

1 iiσ σ ϑ∆+ ∆ − ≤ ∆ ， 

此时有 ( )( ) ( )( ) ( ) ( )( )2 2 22 2 2 2 2 2
1 1 1ˆ ˆi i ii i iσ σ σ σ ϑ σ σ∆ ∆ ∆+ ∆ + ∆ + ∆− − − > ∆ − − ，由式(16)和 ( )( )2 oγ ϑ∆ = ∆ ，可知存在 

( )0,1c∈ ，使得 

( ) ( )( ) ( )
22 2

1 ii cϑ σ σ ϑ∆+ ∆∆ − − ≥ ∆ ， 

因此 ( ) ( )( ) ( )( ) ( )
2 22 2 2 2

1 1ˆ ˆ1
i iE F i ii iP I I P cσ σ σ σ ϑ∆ ∆+ ∆ + ∆

 − = ≤ − − − > ∆ 
 

，由式(15)和概率阶的性质，可得 
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( ) ( ) ( )
2

1
i i

N N
E F PP I I O

γϑ ϑ
ϑ ϑ
 ∆ +

− = = +  ∆ ∆ 
， 

总观测时间区间 [ ]0,T 固定，样本点数 ( )1TN O −= = ∆
∆

，使用联合界，有 
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=

∑

  

因此，对所有的 i ，有 ( )0 1
i iE FP I I− = = ，所以有 
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≤
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≤
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=

 (17) 

结合式(15)，(17)，有 
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因为 1 0N
γϑ −∆ → ，意味着 1 1 2 0N N

γ γ γϑ ϑ − −∆ = ∆ ×∆ → ，所以有 
2 1 1 1
N N N N

γ γ γϑ ϑ ϑ ϑ− − −∆ = ∆ × ∆ ≤ ∆ ， 

且 3B 的分母部分满足式(13)，所以 ( )1
3 P NA O γϑ −= ∆ 。证毕。 

引理 3 (Bandi 和 Phillips [9]和宋坤洋[14])若条件 A1~A4 以及成立，对任意 x I∈ ，有 

( ) ( )2 2
P

TRNW x xβ β→ ， 

若进一步满足 ( )1 5h O N −= ，有 

( ) ( ) ( )
( )

4
22 2 4

0,
d

TRNW

x
Nh x x N

x
β

β β
π

 
 − →     

 



， 
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其中 ( )2
2 du u= ∫  。 

定理 1 的证明：门限复加权估计量的估计偏差 ( ) ( )2 2ˆ
TRNW x xβ β− 可以分解为如下两个部分： 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2ˆ ˆ
RNW RNW RNW RNWx x x x x xβ β β β β β   − = − + −  

  ， 

接下来我们分别讨论其右边的两项。对于第一项，由条件 A5(a)，可得 

1
N

γϑ −< ∆ ，

1
1 h

γ
γ γ

−
−∆ < ， 

这意味着 
1

11 2
N h h
h h h

γ
γ γ
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−

− −∆
< < = ， 

如果我们选择
10
2

γ< < ，那么

1 2
0hγ

−
→ ，因此存在

1 2 0q
γ

= − > ，于是有 ( ) ( )q
N h O hϑ = ，满足引理 2 的

条件，所以我们有 

( ) ( ) ( ) ( )2 2 1ˆ
RNW RNW P N P Nx x O h O γβ β ϑ ϑ −− = + ∆ 。 

对于右边的第二项，由引理 3 可知 ( ) ( )2 2 0
P

RNW x xβ β− → 。门限复加权估计量 ( )2ˆ
TRNW xβ 的相合性证明

完毕。 
接下来我们证明扩散函数的门限复加权估计量的渐近正态性。根据总的估计偏差的分解式，我们

有 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 ,ˆ ˆ
TRNW TRNW TRNW TRNWNh x x Nh x x Nh x xβ β β β β β     − = − + −    

    

通过引理 2 和条件 A5(b)，我们可以得到 
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

 

因此加门限的复加权估计量 ( )2ˆ
TRNW xβ 的渐近性质由 ( ) ( )2 2

TRNWNh x xβ β − 
 决定。而由引理 3，我们有 

( ) ( ) ( )
( )

4
22 2 4

0,
d

TRNW

x
Nh x x N

x
β

β β
π

 
 − →     

 



， 

证毕。 

5. 结论 

本文针对带跳随机波动率模型中波动率过程的扩散函数，基于离散观测样本提出了两阶段非参数复

加权估计量。在第一阶段，我们不指定波动率估计量的具体形式，而是对波动率的估计量施加一些假设

条件；在第二阶段对扩散系数进行复加权非参数估计时，由于跳的存在，会大幅度提高估计量的偏差，

我们通过施加门限函数来去除跳产生的影响，从而减少估计量的偏差。在波动率过程满足遍历性与平稳

性的条件下，我们严格证明了该估计量的相合性与渐近正态性。 
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