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Abstract

This paper proposes a class of Newton iterative methods with adaptive parameters, where the
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adaptive parameters are constructed using the function under study. Firstly, from the perspective
of | f(x,)

, the relationship between it and the step size is analyzed, thereby constructing an adap-
2

L+ 1+a|f(x,)

method with adaptive parameters is constructed. The validity of each iteration is illustrated by
proving the establishment of | I (% )| < | f(x,)

tive parameter 4, =

that can adjust the step size. Secondly, the Newton iterative

. The influence of different valuesof ¢ and p on

the convergence domain is discussed through fractal diagrams, and the algorithm flow of the adap-
tive parameter Newton method is given. Finally, convergence analysis and numerical experiments
show that the algorithm has local second-order convergence and global convergence under certain
conditions. Meanwhile, Matlab is used to verify that the algorithm has wider applicability compared
with the Newton iterative method.
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Figure 1. The process of solving the root of a nonlinear equation using Newton’s iteration method
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Figure 2. Classical Newton’s method
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Table 1. Number of iterations and errors of APNM and NM iterative methods
2 1. APNM 5 NM S ARIER R B SIRE

- ) EAR R EL R
R WILR{E
APNM ANM  NM APNM ANM NM
£i(x) 1.5 8 15 >100 22x1071 5.6 x 10714 R
£ (x) 3.0 5 7 6 2.8 x 10714 42 x 10714 3.6x 10714
fi(x) 5.0 12 20 >100 4.1 % 10714 3.8x 1071 R

Table 2. Four iterations of data using the APNM iterative method of £, (x)
2. f,(x)BER APNM KK 4 RIS EBUE

n Xn RZE e Uy
1 2.258 1.63 x 10!

2 2.096 138 x 1073 2.01
3 2.0946 1.02 x 107 2.00
4 2.0946 5.62x 10713 2.00
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