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摘  要 

本文考虑三维微极Rayleigh-Bénard对流方程，设 ( )( )u t x, , ,ω θ 是方程在 ( )T0, 上的Leray-Hopf弱解。证
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Abstract 
This paper considers the three-dimensional micropolar Rayleigh-Bénard convection equations. We 
establish regularity criteria for weak solutions, based on the following conditions concerning the 

pressure: q 12
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 then the solution can 

extended beyond t T= . 
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1. 引言 

研究 3
 上的三维微极 Rayleigh-Bénard 对流方程 
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其中 u 是流体速度场，ω 为流体粒子旋转角速度的微旋转场，π 为标量压力，θ 为温度，ν 为牛顿运动粘

度系数，κ 是微旋转粘度系数，α 和 β 为角粘度系数， µ 是热扩散系数， ( )3 0,0,1e = 为垂直单位矢量，

3eθ 项描述浮力对流体运动的作用， 3u e⋅ 模拟热的无粘性流体中的 Rayleigh-Bénard 对流运动。由于 

, , , , ,ν µ κ α β γ 的具体值在本文的讨论中没有特殊作用，为简单起见，取 1µ γ= = ，
1
2

ν κ= = ，
1
2

α β= = ，

则方程(1)可以化为 
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当 0, 0θ ω= = 时，方程(2)是经典的 Navier-Stokes 方程 
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许多数学家对方程(3)中压力提条件得到解的正则性准则。2001 年，Chae 和 Lee [1]证明当压力π 满

足 

( )( )3 2 3 30, ; , 2,  
2

r sL T L s
r s
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时， u 也是正则解。2006 年 Zhou [3]证明当压力π 满足 
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则 u 在 ( ]0,T 正则。2021 年 Wan 和 Chen [5]证明若压力π 满足 
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则弱解 u 能光滑地延拓出 t T= 。 
当 0θ = 时，方程(2)变为微极流方程 
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 (4) 

1996 年，Eringen [6]引入微极流方程来模拟微极流体，最先提出有关微极流方程的理论。1997 年，

Galdi 和 Rionero [7]得到微极流方程弱解的存在性。2005 年，Yamaguchi 在[8]得到微极流方程强解的全局

存在性。2010 年，Yuan [9]证明若速度u 满足 
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则微极流方程的强解 ( ),u ω 可以光滑地延拓到 ( ]0,T ，从而得到微极流方程经典的 Serrin 型正则性准则。

在此之后大量微极流方程的正则性准则的结论被证明。同年 Dong 和 Zhang [10]证明当速度u 满足 

( )( )
2

31
,0, ; , 1 1rru L T B r+

∞ ∞∈ − < <  
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时微极流方程的弱解 ( ),u ω 在 ( ]0,T 正则。2017 年 Gala [11]证明若压力π 满足 
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则三维微极流方程的弱解 ( ),u ω 在 ( ]0,T 上正则。 
微极 Rayleigh-Bénard 对流方程描述的是一种特殊的热对流现象。当研究填充两个刚性表面之间区域

的流体层时，流体从下面加热，通常会在Boussinesq方程的近似框架内描述这种热对流现象(见[12]-[15])，
这种现象被称作微极 Rayleigh-Bénard 对流问题。受文献[5]、[10]和[11]的启发，考虑微极 Rayleigh-Bénard 
对流方程在 Triebel-Lizorkin 空间上的正则性准则。下面给出本文的主要结论。 

定理 1.1 设 ( ) ( ) ( )2 3 4 3
0 0 0, ,u L Lω θ ∈ ∩  ， 0 0 0u ω∇⋅ = ∇ ⋅ = ，且 ( )( ), , ,u t xω θ 是方程组(2)在 ( )0,T 上

的 Leray-hopf 弱解。若压力π 满足 
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则(2)的解 ( ), ,u ω θ 可以延拓到 t T= 。 
定理 1.2 设 ( ) ( ) ( )2 3 4 3
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的 Leray-hopf 弱解，若 π∇ 满足 
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则(2)的解 ( ), ,u ω θ 可以延拓到 t T= 。 
注：定理 1.1 包含了[5]中定理 1.1 的结果，定理 1.2 包含了[5]中定理 1.2 的结果。 

2. 预备知识与重要引理 

本节介绍一些常用的函数空间及一些基本性质。 

定义 2.1 [16] 设 ( ), nχ ϕ ∈  是非负径向函数，满足
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定义 2.2 设 h′ 表示无穷远处趋于零的缓增广义函数， s∈， [ ], 1,p q∈ ∞ 。对 hf ′∀ ∈ ，使得 
1
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的这样的 f 的全体构成的空间称为 Triebel-Lizorkin 空间，记为 ( ),
s n
p qF  。 

引理 1.3.14 设 u ，π 分别是方程(2)中的速度和压力，1 s< < ∞。则存在常数C 使得 

 ( )2
2 1 ,s s sL L L

C uπ θ−≤ + ∇  (7) 

 .s s sL L LC u uπ θ∇ ≤ ⋅∇ +  (8) 

引理 1.3.14 的证明 用∇⋅作用于 ( )11.2.2 两边，结合 0u∇⋅ = 得 
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所以由 Riesz 变换的 pL 有界性得到 

 ( )2
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即完成了引理 1.3.14 的证明。 
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引理 1.3.15 [17] 设 ( )p nf L∈  ， 0 s n< < 。则存在 ( ), , , 0C C p q n s= > ，使得 
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其中 p，q 满足
1 1 s
p q n
− = 。 

3. Triebel-Lizorkin 空间中的正则性准则的证明 

本节将给出三维微极 Rayleigh-Bénard 对流方程在 Triebel-Lizorkin 空间中的正则性准则的证明。 

3.1. 定理 1.1 的证明 

第一步：L2-能量估计 
将方程(2)1，(2)2 和(2)3 分别与 ,u ω和θ 做 2L 内积后将三式相加，再利用 0u∇⋅ = 、Hölder 不等式和

Young 不等式得 
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整理得 

( ) ( )2 2 2 2 2
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接下来先估计 2J 利用 Hölder 不等式和 Young 不等式可得 
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下面估计 3J 利用 Hölder 不等式和 Young 不等式可得 
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最后估计 1J 根据 Littlewood-Paley 分解，将π 分解为 
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下面对 11J 进行估计。利用 Hölder 不等式，Bernstein 不等式，Gagliardo-Nirenberg 不等式，引理 1.3.14，
引理 1.3.15 和 Young 不等式可得 
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其中利用了不等式 
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对于 12J 利用 Hölder 不等式，Gagliardo-Nirenberg 不等式，Sobolev 嵌入，(12)式以及 Young 不等式

可得 
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其中利用了不等式 
12 121
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对于 13J 利用 Hölder 不等式，Bernstein 不等式，Gagliardo-Nirenberg 不等式，引理 1.3.14 和 Young 不

等式得 
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其中利用了不等式 
1 4
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类似地，将(2)2式两边乘以
2ω ω 后在 3

 上积分，利用分部积分和 0u∇⋅ = 得 
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通过分布积分再利用 Hölder 不等式和 Young 不等式得 
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即可得到 
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同样地对(2)3 式两边乘以
2θ θ 后在 3

 上积分，利用分部积分，Hölder 不等式，Young 不等式和
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综合(19)式，(20)式，(21)式，(23)式和(24)式可得 
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选取(25)式中的 N 使得  
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同时还得到 
8
554

4 42 , 2 .
NN

C u C C u C
−−

≤ ≤  

因此(25)式变成 

( )

( )
( )

( )

3 3 3

3 3 3

0
10 3,
5 6

4 2 2 2 2 2 2

4

2 2 22 2 2

10
4 4 4 5 6
4 4 4 4

1 d 7 1, , d d d
4 d 8 4

1 1 1d d d
8 8 2

log ,
qq

q

q
q

F

u u u x x x
t

u x x x

C u C u e C

ω θ ω ω θ θ

ω θ

ω θ π
+

−

+ ∇ + ∇ + ∇

+ ∇ + ∇ + ∇

≤ + + + + +

∫ ∫ ∫

∫ ∫ ∫



  

  



 

于是我们有 

 ( ) ( )
( )

( )( )0
10 3,
5 6

10
4 4 5 6
4 4 4

1 d , , , , log , , .
4 d qq

q

q
q

F
u C u C u e

t
ω θ ω θ π ω θ

+

−≤ + +




 (26) 

因此对(26)式利用 Gronwall 不等式可得 
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, ,M u eω θ= + ，再次利用 Gronwall 不等式可得 
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即完成定理 1.1 的证明。 
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3.2. 定理 1.2 的证明 

类似定理 1.1，考虑如下 L4能量估计 
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由(27)式即可得 
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综合文献[5]和定理 1.1 的证明过程即可证得定理 1.2。 
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