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Abstract
This paper investigates the variational inequality problem on Hadamard manifolds. To mitigate the
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high computational burden incurred by executing two metric projections in traditional extragradi-
ent methods within manifold environments, we propose a modified Tangent Half-space Projection
Extragradient Algorithm (R-SSEG). Distinct from existing studies that conceptualize the projection
step merely as an abstract operator, this work fully exploits the linear structure of the tangent space.
Based on the Karush-Kuhn-Tucker (KKT) conditions, we derive an explicit closed-form solution for
the tangent half-space projection, thereby significantly reducing the computational complexity of
single-step iterations. Furthermore, the algorithm incorporates an Armijo-type line search crite-
rion, which theoretically guarantees the monotonic descent property of the energy of the iterative
sequence. In terms of theoretical analysis, we establish the global convergence of the algorithm un-
der monotone conditions and prove the Q-linear convergence rate of the sequence under strongly
pseudomonotone conditions. Finally, large-scale numerical simulations in high-dimensional set-
tings are conducted, verifying the superior computational efficiency of the proposed algorithm com-
pared to both classical and state-of-the-art counterparts.
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1. 51§

Aoy A5 A ((Variational Inequalities, VIV AAEL A 7 5 S LA H IAZ OB, FENLER 22T [ 1], W&
i, BBREESHEE. MERREEZOBET 2N ERAA RS R4 m, VI
WHREOIERBON B& KRR, ZWEI2] (31T HRIZHE . T4k, FEERRE 5 LRI
k& sA g5, BRI (1S bR ] AR SR LR IR S B, AR S BT E B RIS P 2 M4 A], T
WA WNAE TR 2008, WA 4% IE e R 23 A] . Grassmann. Stiefel JitJE. #EERS XU 2% (0] 55
R, 29RO RIONAEZREE 2 AR, VSR A LA E BT RS, (RAE TR VI BB 5 55 RK IS
TIAHE) T RIS RIUHELE, S WA [4]-[6]0 1X—HE) AL RE AL SEZ1 i (o) B JLFATAR, & rTAEA SIS
FRARFR I D0 I 42 5 JUART 25 A6 345 B 9 R e S5 nT iR SRR R s AH S 1 22 BR 7 TR Hh i AT A
VI AR RIS S MR P EEAH, S W Ee).

HARI S, ARSCERAET Németh [4]7E Hadamrd VB EHE AR 0 A8 B M N —4E50A IR
Hadamrd i/, Cc M NAEZHNMINEE, F:C—>TM N—¥EREY. ZaEeAETHR—5Ax, £
IR yeC, RN NAER:

(F(x).exply)20 (1.1

Hor () RRBEER, exp ! TR SIREWU WU . ZBIRR 22 IR R R AR S RS TE R 2
FTHEZL N (0 EARHE), o e B i se it S WSSt o M i e kil

BT Y LRGN B TR A, W S R R FE BORIE AR (I TE A L. Censor 5
N[TIHERR RS T 42 T 0BG S AR EE ik, ST i 055 ff B 1) 2 22 IR B R A AR ) SR 20 AR V0 58— IR
B, X — ARG B RE RIEIEL[8] [9].

FEDASKIS I L, SEIIRIE TE 2B 2R RS . —J7 T, 9 7B 28 20l R AN

=
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Tan 55 N[10]5ITHE H 1 — P T B & RN KRR OB LA MG BE B0, il /s S P K S8
FEAR HIE N AR LT Sahu 28 A[T1TIRFFE, 04, Shehu 5 A[12]5] N T INEE A, Alakoya %5
N3N R T EnEb K. 55—, ZMM Armijo Y2638 2 LA ™6 14 e SRRSO s AT i
AT U EAE,  FELRUE 524 R R B SO AR SR B A AT BRI HEAMME . Rl e 78 b 22 = 4
HIRARI R, WG B LR g5 R, B AR R EIR IR B SRR BERE S, UIE SR
ANIRTL .

2 EIRTARJE R, A H T —Fh Hadamard /% _E ) Armijo 24 U 2% [0 #% 52 /M6 B2 579(R-SSEG)
S5EE TAEMLL, AR FETTERE T WiE 73T KKT &40 8RB A, RETE k=
[ HE 5 A TR ST, AR 2R 2 4R B S (1 30 S5 ) R AL 2 D) 25 1), 2T KKT %A HE S
H 7 (AR AT . IX — A B S R IR 1 I A e U A R R i BB B, AR H
T T LRI AT . 7E Armijo #ENTR, PEAGIEBA T SR B 7 A R R BRI . 7R ST R
FAYAMERN Lipschitz HESEPERIER T 4RSStk s 7RSOV SR 264 T, B —DUE T HIEBA Q-2 ist
AR I YER R AN, BUE T %S VAR KR ) R A b AR G SR R R R RV AR U
SRR TB) S5 USSR B 2R AR

AL o 3 A AR 2RI ERSERATRI MR . BN LR =T, B EIERIEk
PEBT DA RS SIOE % o R DU R BB . B8 T R A

2. MEHNA

AT BRI 455 A Hadamard W% b B ANE S AN 5T, W] 22 SCHR[14]

WM A—ABRERHRE, MMEExeM , WHY)EEANTM . Hadamard #itJE FYIZEE T M 25
R” % PR Hilbert 206, FrA VI EMIFTM: = | TM FRAVIM . EEGATM ERE DR
()0 W (M,()) RN &Y, MR REGe A VTs JV. ) o REARTI R IR F s x 0.

WLV N S5REEREMA HIHRM Levi-Civita 8. & y:[a,b] > M AHBC ik, HKE
((y):= I:||7(Z) dr o HV,7=0, Wy N, 2 "}/(t)" =1 N FRE R EAL LG . XMEE x,ye M,
E X Z ARSI d (x,y):=inf {£(y):y:x~ y} o BHHFIMLEIKEELENZ FF, WFRH A%
Pex, y RN .

B y:[ab]> M NN IME. W& F ARV, F =0, WKREYS F iy VAT M8 ve T, M,
SAFEME— AT RIS V13V (7 (a))=v o BAVESCPATBBI P, 0  TgM = TiM -
Py (V):= V(r(b)). My @i, yROBRmEMMARN, 2P A8 Playorey o AT BN R FHEH
F4) 2 <Pyﬂu,77yﬂv>x = <u,v>y o

MEExeM 5veT M il y, (x) WA x AL s HIE BN v FTIHBEL U exp, - T.M —> M ,
Bl exp, (v) =7, (Lx)» ZBHE — Ml R A5 S48 — 10 Hal W (B 28 2 0 B i) 4 log, = exp.' s
Ny 5 x BME—FIE N LATER . log, y e TM &k Hili 2 log, y|=d (x,v) -

5|3 1. [14] (Hopf-Rinow)# MEE AU R EFTH 1 e R EHAE L, WFRM 584 . M 58
&, WH

(1) AR RURT B R e 2 %

(i) FEEAN (M, d) 564 A RHEE;

(i) MRS x,  exp, TEIEAR P 5 [FIE o

M FEe . B H A s A 4EE, WK M N Hadamard IRJE .

N SCHE LIRS S 7E Hadamard i B, B LA & RHR:
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() MEZBxeM, exp:T.M — M AW FEIE, KM log, £ M R IER:;

(ii) E%ﬁﬁﬁﬁﬁﬁ%*%%ﬁﬂﬂﬂﬂhéﬁ?&%;

(i) BF 2 T A e b 4h

(iv) /“%-ﬁ'Jf@%%E’J?ﬁfl‘%ﬂ PHy ME— Eﬁ£ﬂﬁlﬂﬂ?}

512 2. B A(p,,p,. p;) & Hadamard it/ M i) — NI =M TE, WX i=1,2,3(mod 3), 2
7, :[0.1]—> M %R p, B p,,, LG, HKPBENL = L(y,)» % a, = 2(7/(0),- 7., (I,)) FrDIm s
y(0) 55—y, (1) ZIAHeff, 34 RL:

1) a+o,+a,<rm;

() 7+, -

(i) [, cosa,,, +l cosa; =1, -

) FH B 25 R 50 e B A, A G R (i) T 40 0l B A
& (D P )+ 4 (P Prn) —2(log,, | pilog, pio)<d*(pysp)

2
2L, cose,,, <1,

i+2

_l—?‘
d(p-pii)<(log, pioilog, puy)+(log,  piaslog,, i),

ﬁiﬁﬁﬂ??‘%%iﬁ@ogm pi-log, | p,.+2>:d(p,.,pm)d(p,.ﬂ,pm)cosam o HZUNTAZH[15].
FIE3. Wix, M, 5y, >x,eM, UWH

(i) MERK yeM Flog, (v)—>log, (v) UM log, (x,)—>log, (x,)

(i) Wke, eT, M ULic, >c,, MAcyeT M-

(i) %hu,,v eT M B Ry, v, e T M > WRu, > uys v, > vy WH (u,,v,) > (45, o

n’’n

EX 1. EHadamard WM L, GEdEmsmiithECe M, SHMEExeM , x5 C AN
P (x) =arg mind(x,y) .
yeC

N 2. %M & Hadamard Wi, BT FR—AMEY, WANEENxeM, F(x)eT.M , WK
R FONSBRAER .

SEX 3. [16]8 M —> Hadamard i . TR FeX(M):

() ZFIMP, HXMERE x,yeM, WHE <F(x),10gx y> < <F(y),—logy x>;

(i) —FRWE, HXMERx,yeM, ﬁﬁE(F(x),logx y>20 , ﬁ<F(y),logy x>£ 0;

(iii) RS PIEI[17], FXHERE x,ye M, WL (F(x),log, )20, WAEAERES >0, Hifd

<F(y),10gyx>$—c:d2(x,y).
EX 4 WEE x,yeM, HEHEHL>0, TANREFE F 2 Lipschitz i1, 4
|F(x)=P F(v)|< Ld (x.p).

y—x

PG F A SO F I 3 2 n) RUE S DA T e OB G .
SEX 5. %M & Hadamard 32, Cc M ZHNE, MRS F:C—>TM , B2 AZERRVEI
MEEM yeC, HElxeC, fif5

<F()c),10g)C y> >0
MM =R"E, log y=y-x, BI&HR" S AEX(VI, < (),y—x}ZOO
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3. FELER
LEARTTH, A GIRA TG —Fh Armijo B 258 LR AMBA R 3, BLEEJR S0t i, TRATEEE %
S LA R

(HI) RVI(C,F)ff£EAE=, R Sol(C,F)# D -

(H2) M 4y Hadamard /¥, RMXMEREIETANMMNEC M, FEEHRE P A EHIET K.

(H3) $4 Ca M AE%. M. By, WEHF:CoTM , WRF(x)eT.M . FREDAIHEN,
HAEA 4 b —30ESE

(H4) B Armijo Z8u € (0,1) « KR 1 (0,1) - AR D KIS T 5 >0 .

T 5| B U WIS A

Bl 4. ARERIZHE, =|v, |1, XA

V=V, —max{O,M}sn , H™ = {v:(sn,v>S0} s, =log, u,, Hidp, :M , B

Vn

n+ 2

n n

(CRAN]

2

n+l — “n

Is

n

HrH (a), =max{a,0} -

2
S

n

N N S5V,
R i a, = max{0,< >} » v,eT, M W, =v,~as,, H

2 2

2—2a<s v >+012

n’’n
2 2 = s
=||Vn|| ’ ﬁvﬁk_\L;

2 (<S"’v” >2 )+

- 2

\4

n+l = Vn Sn

(i) #(s,.v,)<0, Ma, =0,

v

n+l

(i) # (5,.,)> 0 )F!lJan:(S"’—v"), B4,

2

s b, AEERAS, H(s,.v,) > 0 N AR B A R I

125 F U B 1R ANE 7 B S Pt 0 e VR A IA AT [ R e B A TR, 7R P R e H A
QU i REEAEHL, IR AT G BEREAIE Lyapunov 2 el B S L HIE S03% .

5|8 5. WM & Hadamard MJE, (EAEREYIRU c MxMxTM W, fFEFHHC>0, HEXTH
(x, y,é) cUFH

Vit “Nn

n

log, (exp, £) = log, x+ B, &+ R(%,,¢) (12)

ﬁ;ﬁljé%lﬁ‘iﬁﬁ;%”R(x,y,f)”SC(d2(x,y)+d(x,y)||§||+||§"2), R, Zd(x,y)—>0m, H|&| A5,

"R(x,y,f)"—)O o
W FEEyeM, ida=log,xeT,M, o=P_ T M, MNdl=d(xy), |o|=]¢]:
BeeT M, EXITHA p(a,0)=log, (exp, &) » 5 ¢ TE (a,0) = (0,0) HHITRZ C* . HEA
¢(0,0)=log, (expy 0) =log, y=0;
%a=0, XVheT,M, % o(t)=th,
EIEE G y (1) = (/J(O,a)(t)) =log, (expy th) » Hly'(0)=

7'(0)=D,p(0,0)[n]=

H %—73@,
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W D,p(0,0)=1d -

2w0=0, MVheT,M, %a(t)=th, ix(t)=exp,(a(t)),

HIRE G ML (1)=p(a(t).0)=1log, (expx(t) 0) =log, (x(t)) =log, (expy (th)) » D,p(0,0)=1d -
PNIIES]

Dgo(0,0)[(a, a))J =D,0(0,0)[a]+D,0(0,0)[w]=a+a,
i Taylor J&
go(a,a)) = ¢(0,0)+D¢)(0,0)[(a,w):| +R(a,a))

(1. DR
MNFTMXT,M cR", ¢(a,0) \IF{F Banach 2 [A{E K] C* L.
MV (a,0)eT,MxT,M
¢(a,0)= ¢(0,0)+D(p(0,0)[(a,a))] +I;(l—t)Dzw(ta,ta))[(a,a)),(a,a))] dt,

% R(a,0) = [ (1-1) D*p(ta.10)[ (a,0).(a,0) |dr , HEZEL, 55

g el
NI]
@ 0-nfpotuo ol ol
ORI
[7(@ @< (ol +lallle]+ e )
£R EARIIE.

FI12# 6. & (M,g)s 2 Hadamard i/, WATEE C M M. M™Y. 4525
un = expx,, (_ﬁnF(xn ))’yn = PC (un )’Sn = logy" un’vn = _ﬂ;1lpyn—>x"F(yn )

PAAE (x, ) AL

—0. d(x,,»,)—>0- ﬂn||7)yﬁan(yn)_F(x")”_)0’

Hx, ->x"eC, WA WHLERVI, BlVoeC
<F(x*),logx* a)> >0.

VR 513 Ll d(x,,y,) >0, Hx, >x"Fly, >x"» XHy, =P (u,) FEERZEIIER,

VoeC, <sn,10gyn a)> <0 (1.3)
H 52 4
5, =log, u, =log, (exp, (-B,F(x,)))=log, x,~B,P, ., F(x,)+R, (1.4)
Hrp
R = C(d (5,2,)+ B,d (5,9, )|[F (5| + 27 (5, ).
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i Armijo WIS K TR () 95— LR, 4, <2, Fiesnm s,

F(x, || 65 g46048

(5,07, = (108, %, )= B, (P, .., F (3,). B,F (,) +(R,o3,)

itd, =d(x,,y,)~ T,=p, v,|=B,|F(3)|~ e =log, x,+R, MM Armijo 52

bS]

F(x, )" T o=

B,

Py,,—nc,,F(yn)_F(xn) S/udn

F 1 Lipschitz 450

T.=B,|F(3)|< B, (|F (x,)|+2d,) =T, + p,Ld, <T,+ BLd, .
s B
He g ; I
S, = ﬂnR ﬁynF(xn)‘l‘en,
BAe,|<d, +|R,|, eI 448
IR <C(d; +d,1,+T7)<C(d, +T,)’,
M
<S’7’V'l>+ gdnf;z +T;1fn + R,, j:n
S( n+_Ldn)(dn+Tn+ R[)
ST,,(Tn+dn)+Cl(dn+Tn)2
X
lsll=-B.P, 0 F (3,) +e,
ZTn—(dn+ R, )
>T,—d,~C,(d,+T,)
M

(s,v). _T,(T,+d,)+C(d,+T,)

P, = (1.5)
S” T;'t_dn_cl(dn-’-jll)z
limsup?, =7 >0, 1.7, z%,w»o, (1.6)

MIRF(1.5), HS>0, MHEFEHERY, 3¢, >0, 15

<s’l’vn>+ > c()Tnz —

= 0%n >
T

n

), =

S

MHH(1L6). 10,262 >0, K. MTIT, >0(n o)

IEES, B Armijo #EN 25

B,P. ., F(x,)-F(»,)|—0. LR, >0
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A
s, =—pB,F(y,)+o(n) (1.7
Hrbo(n) ML MIE SRR, 2501.3) 1L DE
<—[)’nF(yn)+o(n),logyn co> <0
Ln—ow, Wy -x, HVoeC
<F(x*),10gx* a)> 20
25 L AIES
2O B E G T BRATFIER-SSEG)EAHHENLAEN], 1X 2 — N BRM, il A LR =
T 0, WHEASE AR /2 RVI A

BI3 7. Wi F {E C L2 L-Lipschitz B4, #5R 50 | i) Armijo 428U, T RRAG
SRR} RATII o EIRHERL n> 0 2977

min {7%]} <B, <y

Hory AWIUGAER T, AR,  u N Armijo S5

BB 5 1 PR, B UOEARTTIRRT, 2R K g =y AP K2 Armijo 2615, W B, =y
AL, MEET 1 e(0,1) BEAT R4 . BAEZHPKB, <y .

TVIEK B =y WK, W B =y, FHREIRMSL. FHEW, BB m, R 5K

- M Lipschitz #E4EVE & Armijo #EM, 4P K p< = HT AREERGKAFRAL, RO AR A 22 TOBR ik
17, BT B REAK, MHAT—REEK g = ﬂT W TE AN A, LA B >% , GEARIE.
518 MvoeH™, A, -v,,,.0-v,,)<0, H%ﬂﬂa) =0 UK w=log, p(peC), M3HH
(Vysva) 2
<10g N p,vn+1>2 <logy" p,vn>.

UER fET, M, S, %0, H“’“—{a)eTynM:(sn,a))so}, H™ W HMN, v, &, B B IR

W VYoeH™, HBER w(t)=(1-1t)v,, +to, Hirel0,1], Mvrel0,1#H o(t)eH™, %

()=l -

Hi v, 28 7" R, We=0 M2 g () /s, Bvrelol], g(r)2g(0), MigrkT1t
)

n+]

M2, =025/Mam, MNiihAFE g (0,)>0, 7
—C()(t) vn n+l) (C() VH]) s
g(t) = |(vn _Vn+l)_t(w_vn+l) ’ = Vn n+1 2t< n+l’w Vn+l>+t2 "a)_vnH 4

i

g’(t):—2<vn— Vo0 — 1}n+l>+2t||a)—vn+1 g

g’(o‘* ) = _2<vn _vn+] ’a)_v;1+1 > >

>
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<vn n+1= - Vn+1> S 0 °

2

FW =0, MW (v,v.)=|v.
%Ela):logynp, H

<sn,logyn p> <0

Hlog, peH,”

NIIEE]

(v, =v,slog, p=v,,)<0
Bp

(v = Vuslog,, PY< (v, =V,0,0)

It

<vn+1,logyn p> > <vn,logy” p>
£ EASIES
XA GIERS AR BT RVE S5 PR S5 IRAEASE e RIS RVI E SO

O

BIBL9. ¥ peSol, NXfvyeC,

(F(y)log, p)<0.
ER A, VpeSol, B

(F(p)log, y)<0
EFATBAFITM , 13

(P,,,F(p).log, p)<0.
HE X 3 514
(P, F(x)=F(y)log, x)>0 (1.8)
Wx=p, &E5(1.8)FH
(F(y)log, p)<(P,,,F(p).log, p)<0

v 3L
SIE 0. BB, B, —exp, (v,.,). WA VpeC, #

dz( n+1ﬂp)<d (yna ) Vit _2<Vn+1’10gyn p>
UERA A BEE RS eI R, B o
o ()= (v0) 19)

£ Hadamard it/ £, f, (x) Wb, ZEERE VY, (y)=—log, @, H Hessf, (y)<1Id
WvveT M, #
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£ (expy v) <f, (y) + <Vfw (y),v> +%||v||2
FAHRAN EAXTE
%dz (expy v, a)) < %dz (y,a))+%||v||2 —<logy a),v>,

W (y.v,0)=(,.v,0-p)» 1AL
R—ZRY 5B, BTk B BRATRMA Ve i 7] JE(1.1) I BE(R-SSEG) »

Algorithm 1. Armijo-type Cut Half-space Projection Extragradient Algorithm (R-SSEG)
B3E 1. Armijo B I AR FSME B HIE(R-SSEG)

VI JEILG A x, e C o BRI B KATIA T y >0, Armijo 38 pe(0,1), SKEWE1<(0,1), HBME
e>0. BERITEE =0,
BB, LRBPK =y, BITULT Armijo 248 Rid
R = exp, (<BF(x,))> ¥ =P(u)
K # Armijo 24t
B|P.. F(y)-F(x,)
EAL, WL B« p-1, E’EJ:L_lJrﬁ;
L, WM KAN B =4 PNy, =y
SE2 ¥id(x,.y,)<e, WEILIEAR, i x, AQDRE. T, EP20E T M pdTEUEIE
s, =log, ¥,
v,==BP . F(»),

YoX,

<pd(x,,y),

TRy, 1E 2300
H" ={veT M:(s,.v)<0}

V.=V, max{ <S” v”>}s
sl

xn+l = expy” (Vn+l) N

ERHEy,, N

SBT3 UUEIEJG 7 R — NS

B 4 32 LU 45 1k

LS nen+1, REGE L,

PP RRZA a4y 1 R B IEANE A R R T
1 W H" = { el M:(sn,v>s0}%@J?l‘ﬂ*ﬁ‘]l‘ﬂﬂéél‘ﬁﬂ, Hers, 20 XHMER v, eT, M, FHE
H™ EREERY Y, = H( v, ) B~ B A

{5,%)
Vy =V, —max{0,~——=¢s, .
Sn

UER S EBRERES, RIFEY v, S84 T1E Hilbert 25 1W] 7, M HRMEQTE — AR ),
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2

1
min —||v—vn
veTng 2

s.t. (sn,v> <0
SINPIASEAHT 220, iRk B H s

L(v.2) == +20s,00)

i Ak i Karush-Kuhn-Tucker (KKT)25 14, sIUMEV 51 A" Fil L,
vi—v,+1s, =0
<sn,v*> <0,4° >0
2 <sn,v*> =0
HPPRAPESRAES Y = v, = A's, o IRTEEIAMAHECAE, PRI OLT i,
Q) &Hv,eH™, WA =0, WV =v,, WHEHAEFML.
(i) # v, e B WL ISP b, B (s,07) =00 AV 3
<sn,vn —ﬂ*sn> =0,
%%fzmu#ﬁﬁ%,ﬁE¥%ﬁﬁﬁ,ﬁ@%ﬁo

2
A

n

EA—IRME, 5 1 d, DUERART RSB R S RA L iR B H R TN p, -

TERASL T AU BN B KA K TG, N OCK E AR FIR IS i . FRAT T E
RS0 1 AR AR T A1) 2 51 3 6 BT AR USCSSE I, AT 2 S BV 1 4 JR e e

FEEL 1 A HD~(HA) AL, R RIS (x, ) W SIFE 6 MFTA &0, | {x,) WS
AAZERADIIREE RVI(C, F)H 1 £,

EH 2 (yv,0)= (xn,—ﬂnF(xn),p) G518 10 13

d*(exp,, (~B,F (x,),p)) < d* (x,.p)+ B2 |F (x,) +28,(F(x,).log, p)
]
d* (u,, p)<d*(x,.p)+ B |F (x,)[ +28,(F (x,).log, p)
Fh JE H A A et
d* (u, p) > d* (u,y)+d* (v, p)
H
& (3,.p) <d* (x,.p)+ B2|F (x,) +28,(F(x,).log, p) (1.10)

WA, =F(x,)-P, ., F(y,), M
B2F () <282|F (3,)|+ 28

<2B|F (v, ) +26d (x,.,)

2

A}’I
(1.11)

X
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28, <F(xn ),logxn p> =20, <73yﬁxn F(y, ),logxn P>+2ﬂn <An’]0gxn p>,
Mo 9, 454 Armijo KN, H

28,(A,.log, p)<28,|A,[d(x,. p)
< Zyd(xn,yn)d(xn,p)

HH=ArEA515

2ud(x,,v,)d(x,,p) < 2ud* (x,,y,)+2ud(x,,,)d(»,.p) (1.12)
454(1.10) (1.11) (1.12), 15

d*(y,.p)<d*(x,.p)+C,d*(x,.7,)+2p;

HHHC, =4+4u, pne(0.1), HIFHE Fejér H1H.

F(y)f

315 4 FIBIH 10, d*(x,.,,p)<d* (3, p)+|al» BEERER|E, [ <|E[ -p2, K
P, = {50 ), » {E Lyapunov RE&EIZ 6, %
Srl
®, =d*(x,,p)+k|, ?
A
cI)n+1 :d2 (xn+19p)+k Vn+1 ’
< d2 (yn 9p) + ||vn+l | ’ + k||vn+l "2
<d?(x,,p)+C,d* (x,,3,)+ 2B2||F (5, ) +(1+8) ]

=@, +C,d*(x,,7,)+36 F(y,,)||2_(1+k)pj,

SUR Fejer SIRBHLRIT S {x,} R AU {, } 0EBL p Jyrh LKA BRI, 7150 log, of 76
ZERE—BCE R, 46 Amijo BKF (B}, B

36, 1F ()

2
< 3ﬂriax ’ SupF(y,,)eB(q)"F (yn )

=C,
Nl
ch+1 < q)n +Cﬂd2 (xn%yn)_(l—i—k)pj +Ck

PRSI 4, HETRANG

2

zpn S 2( vn Vn+1 )
n=0 n=0
=[voll = Tim o
0 N—w N

< o,

513 p, >0
Hi Jacobi I —M iRz, FEFFH {x,} {v, ) WHEAERN, FEEHC>0, i

< Cd(x,,,yn) >

ﬁilog},ﬂ (exp,, (~B,F(x,)))+ P, F(x,)

n
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eI nmaEERE, Yoel, ﬁi<logyn u,,log, a)>£0, NI}

0<—(F(y,)log, ®)= <_F () ‘/;Llogy,, u,,log, w> ' </fL 08,1108, w>
< <—F (yn ) - ﬁL logy,, u,, IOg}'n (0>

IA

F(y,) +ﬂilogy” u, -||10gy” a)"

<(C+L)d(x,.3,)|log,, of

TiEd, (x,,5,) =0, KiE, #d,(x,,5,) 40, WEHEe >0, HETH{n}, A
d(x,.5, )&,k

He >, 1%?%—<F(ynk),logynk p>25k >0, M
G
OS—<F(ynk),logynk p>S(C+L)d(Xnk,ynk)
XHA s, =log, u, =log, p+(logyn u, —log, p) , H

(b)) _(dr( v, )

e p",

TR T el
JITEA
~B,(F(,).log, u,)==p,(F(»,).log, p)-B,{F(y,)log, u,~log, p)
5118

(<8, (F(3,).log,,u,)) =(=B,(F(,).log,, p)) =B |(F(»,).log, u,~log, p)
(<8, (F(5,)10g,, p)) =8,(~(F(1,)log,, p))
(<8, (F(5.)log,, u,)). = B,(~(F(3,).log,, p))=B,[(F(»,).log, u,~log, p)

L& M = 51(1p||F|| <w, R:= sup”log p" <o, NIF
q

(F(5,).log, 1, ~log, p)|< (Jiog,, u,|+[loe,, p])< 4 (ls,|+R)

NI}
(20 o, ) o= () b, )15

WS B, WA R
PuZ6 (_<F(yn)’1°gyn p>)—c2
lidiy
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c
2 —
P, 2CE, —C, > -C——02 =0
1

Hp, >0FE,
d(xn,yn)—>0

WA 51 6 51, AR AR Z (LD
Bk b, W{x, RERFAIERRST I, Hx, >x eC, Wy, >x', 58

J
1
<ﬁ log, u,,log, a)> = —<F(yn),logyn a)>+0(1) ,

n

)H\U Va) S C ’
<—F(ynj ),logyn_ a)> <0,
Ln, >0, fA
<F(x*),logx* a)> >0

Zr EARIIE.

XA EHL T IRATMEIER-SSEG)AE B HIEA T F113 2 51 3 6 ISt ], M2 1 4 m ik sk
P, NHIX AN E B 2228 H R A5 T iU Sios 2 .

EHE 2 B (M,g) st Hadamard ¥, Cc M NMMNHNEE, ##EE Sol =D, & F M — TM {24 515K
_Fi# & L-Lipschitz 2F, 5% R-SSEG FAERIFS1 {x, | Dbl s {y,} B Armijo #WAERL, HAP KA
Ft, 5 FAE B3 e sty o, B/

(F(v).log, x")<=¢d* (y.x7),
WFPF {x, } LA Q-ZRIH AU x™ € Sol , RIMFTE pe(0,1) FIN >0, EHNFTHn=NH
d’ (xw,x*) < pd’ (x”,x*) .

UEBH H Hadamard i (R AE IE AT H 2 PR A = AR R L e &R, BPGIBE 2, SMEE =

x,y,zeM , el
d*(x,z)+d* (y,z)—Z(logZ x,log y> <d*(x,),

SiE ISR, R y, E R s, B <10gy” x, +B,F(x,),log, p> <0, |MNEWT

WG BRI R
dz (xn+1’p) < d2 (xnnp)_dz (yn’xn)+ﬁr12

B, S Armijo BUZRIR R KA S
BIP, e F(v,)=F(x,)
Pz RN LR RE A A

d* (%, p) < d* (x,,p)=d* (y,,x,) + 7d* (x,.,)
= d2 (xn’p)_(l_:uz)dz (yn’xn)

’P)’nﬁan(yﬂ ) - F(xn )"2 >

P <P’ (x,,7,)

M0 T 52 & B B A 4 X
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d*(x,,.p)<d’(x,.p)-(1-1*)d* (y,.x,)
SE5Eof
@ (%, ) <@ (x,,x") = (112 )d* (x,,3, )+ 28, (F (). log,, x'),

1 F ROy SR

& (x,,.x")<d (x,.x" )= (1= )d* (x,.3,) - 28,5 d* (,.x"),
FARYE Armijo 5K A5

&> (x,,,x" ) <d’(x,,x )= (1= 17 )d* (x,,3,) = 2Byl d’ (3, %) (1.13)
B = T A (x,,5,.x ) € M > 1 Young G = A% AH

d2(x",x*)ﬁ(l+g)dz(yn,x*)+[1+éjdz(xn,yn),

fE i REUE A

—dz(yn,x*)S—ﬁdz(xn,x*)+édz(xn,yn) (1.14)

(L1HFRANQA)AE

0 (10 ) S0 (5,120 (3,3, 2 | o (5, oL 5,,) |
B
(008" ) < (1220807 (5, o 1) 2P 5, ),
LG = —% G, =—(1-4)+ 2'38“;, R%éf\zﬂmm‘: -2, WA

1+¢

d’? (x,1+1,x*)ﬁ(1—de2 (xn,x*) ,
ﬁé\pﬂ——zﬂmi“g <1, B
I+¢&

d’ (xm,x*) < pd’ (xn,x*)
ZR AL,
4. BEHEH

FEAT T, FRATIYE Hadamard V75 5t NI I R RUBLE(E S0 S0HIE T AR SCHE Y Armijo YD) 2% A
PSR EESVA(R-SSEG) A &t . O T v AL Sk ERE, 3411 R-SSEG 43 7l 54 M1 Tseng Ao A2
18] LA S [ o (¥ G BB K BE[L01EAT 1 2 4E LA L. AT S8R5 B Python3.11 %
5, HALER % Inter Core i5 CPU@2.50GHz 1)t 5l LigfT.

4.1. SLWIRESRMILTEE

N T SRR SR AE R ) B BRI, FRAT IE) B SCHR P R — B0 L 4R IE S ) B ]
M=R’l+={xeR"|xl->0,t=l,---, }1’5%7@0;&& N T EH AR Hadamard i, AT TH I NR 2 A
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i, MMEERxeM KV &EuveT M =R",
TE SLAFUA
UV,
(u,v>x —[221:7 .
EWERET, WM BEIEIEEHMER, WEx,yeM 2RISR SN
d(x,y)= ;(ln(x,.)—ln(y, ))2 :||ln(x)—1n(y)||2

Hrpin (1) RoRZ0BREARNEL |-, R TEEL.
FARL I FE RO exp, : T M — M J LB log, - M — T.M BA BorFik, 445 T RE 085

(exp,v). = xl.e"i",(logx y). =x ln(&}i =1,--,n.

4.2. RRFESAFNERERE

RN TG — HEA RIS T iPE SR RS, ASGER T Tan S5 A[10]H 3 H 09 m 4E Oy 5
AR 3 ANEE 2 ) R (Example 4.2) 1 AFEHER ] o
AV R _E IR AN ) 8 RVI(C, F), HP 484 ¢ SR LM &L
C:{xeR" [1<x, < S,izl,---,n}

BRELF M — TM 5E U H:
F(x;)=xIn(x;)

PR HUPE S8 SO P 2 SR Dy BRI, R EER M —
X =(11,0)

N T AR SVEAE KT S R B, FRATTHS il 4 B G2 — 18 o n = 5000 « FTXS LU BV % 2
BT

(1) BARE: FrE SR A E R N, B S PRk 7 d (x,, p, ) <107 B3 1RkAR. 4]
U R x, TE[2,5]" IXCTa) P BEALAE

(2)R-SSEG 5 Tseng %2 KHAHFI Armijo ZEH RSH IR A XL 40K+ y =05, ZE
K1=05, 38 u=04.

(3) Adaptive-SEG Hik: KA FSCEWN HENSHRE: VIHPK e, =05, 8, =09, ¥

0.1 0.1

NSHEAN 0, =1+ = H, = ~
(n+1) (n+1)

43. FWHERS 5

4.3.1. 548 Tseng EERFTEE

K 1 B/ T R-SSEG Hik 54 ) Tseng 5LVAAE n = 5000 4 ] f5 L ARS8 T %t te e M 1(ZE) AT A
F i, PIRhEIE AR ZE 38 R ANME T IRE S, 1IX 5 AR SE B i i Q-Z e Sud 2 — 8. (HE RN 2,
R-SSEG HIETEIA R 1070 K 5 B % B ARIREUE 2 /D T Tseng 8. X — 05 A FEARBLAE V1S ] 1 (4]
1 47), R R-SSEG 5l AN T P2 kyid, (Hel T3 758 R &R mmEE R, & CPU FRIL
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T Tseng 53k, XYPPIRAE 1AM 2 RIS A & AEE REIGE, R AR D SsoAs
I s .

WS RILL (N=5000) L

5% (Residual, Log Scale)
=)

## (Residual, Log Scale)
5

0 20 40 60 80 100 0.00 0.01 0.02 0.03 0.04 0.05
EEAREY (Iterations) CPU RJ18] (s)

Figure 1. Comparison of convergence performance between R-SSEG and Tseng algorithms ( # = 5000)
1. R-SSEG H£ 5 Tseng B ARSI BEXTEL (7 = 5000)

4.3.2. 5&#T Adaptive-SEG EERIXIEL
N T IR FEE mRE R R R e 4 )7, AT R-SSEG 55 Tan %5 A [10]5iT K R 1) Hid
KA 1% (Adaptive-SEG)IHAT T XfEL, 5 R WiE 2 Fios.

107 HrghEedtl (N=5000) 102 TS
——- Adaptive-SEG \ ——- Adaptive-SEG
101 —e— R-SSEG 101 \ —e— R-SSEG
100 4 10° 4
o) <
3 1075 3 1075
g < g
- ~ —
N -2 | ~ - -2
el 30
o S o
‘@ ~. @
& 10734 & 1074
B i
1074 4 1074 4
107° 4 107° 4
1076 5 1076 4
0 20 40 60 80 100 0.000 0.005 0010 0015 0020 0025 0.030 0.035
FERREL (Iterations) CPU A8 (s)

Figure 2. Comparison of convergence performance between R-SSEG and Adaptive-SEG algorithms (7 = 5000 )
2. R-SSEG E3£5 Adaptive-SEG HIWET M BEXTEL (7 = 5000)

WSSO FR MM (K 2 /2): SRS Adaptive-SEG HVEIE R H 1N SRS #E 6 | 2SR, (EAEAL I s YRR %
ORI, HOP KB JE i TR, SRS I T RE RIS, SRR 100 &
PIARIEE] 1073 K5 Z . AHELZ R, R-SSEG HEFEME Armijo U ORE ) REB 5038 T B 5T LA S 2E T KKT 2%
e UBIED, PG 7 SR R T 1, I BRI AR E MR L, (X4 64 UGSARED
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%2 (Log Scale)
=)

1074

AIIAE] 1070 K5

LREREE T (E 2 ). AETHERTJTH, AR E &N LR T N IE S A g, {2 R-SSEG
SFAEIE SR BRI Sl o SIS 4 SRR B, R-SSEG A TEIR B 5 28457 1 vE N B 1) S FE oy 4 3505 T
Adaptive-SEG &1k

4.3.3. SHEHBESHEFAHI N

N T AV R-SSEG FHARIEBIE, BA T m4E5F](Example 4.2)% Armijo £ R S
B (0, ) AT THUBIED . B 3 &R TAEA RSB E T Sk SR 2= i 2

ATDAE H, WIRS KGR Ty 25 ma BE I T B . BORM y (W 1.5)Rede LB R maIiG
PRI, AT Inss B U8, TRe/ M) 7 (0 0.2) BRI SRS 2%, 1B IF RBIA SRRt . & 3(b) &2
A BEERE K REIRE 1 €[0.3,0.9] Yu [ A B8 IR FFASE B LMY SR AE . 151 3(c) 38 B B30
Armijo ZH u RABERIVBUENE, ] R-SSEG AR T35 2 K Z B0 -

BeAk, BATEG T T 503 R-SSEG 78 _F ik S48 11°F- 3 [B13 X 2 (A verage Number of Backtracking steps,
ANB). ANB & SR [l 88 DL EAOE H, R %i)m,, o Hedtm, R 5 n POEAGH A Armijo 25 1FPT
THINER RS Gt ds Rk 1 s,

Table 1. Statistics of Average Number of Backtracking steps (ANB) under different parameter settings ( z =5000)
F* 1. FEISHOEE THFEHEIFIRE(ANB)SLit(n =5000)

y ZB(1=0.5u=04) y By =0.5,u=04) y B(y=0.5,1=04)
ZHE ANB ZHE ANB ZHE ANB
0.2 0.3478 0.3 1.1900 0.1 4.4800
0.5 1.4756 0.5 1.4756 0.4 1.4756
1.0 2.4756 0.7 2.0588 0.7 0.4237
15 2.8056 0.9 5.9538 0.9 0.2807

BERY, ELRZHSHAE T, ANB BUEAERERARACTF-GEF /N T 1), R RRE TR
WP K EA R IR, WA 2 Rk &SR EBE P . IXABUE T A W] T R-SSEG 5ik
v R o

(a) Ey (1=0.5,u=0.4) (b) T 1 (y=0.5,1=0.4) (c) Efbp (y=05,/=05)

-~ u=0.1

- p=04

— =07

104 = p=09
T

T T T T T T T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80 100 0 20 40 60 80 100
BRRE RS BERRE

Figure 3. Sensitivity analysis of R-SSEG algorithm under different parameter settings (7 = 5000)
3. R-SSEG BAEATRISHILE THIRHE 24(n =5000)
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4.4. DL

e LAMALIG SR, R-SSEG FIAMUERE LR EN T4 Tseng 53k, 1 HALULSIOR FEA 5
HAUSCSORIE BT R FIE RN . IXER W], Armijo R38R 7 IR A ST LR 43 AN 2 AT
AEIER A, HEESRERZ, Ammijo SIS KKT SR 52K A & RIS EA B, ks
WAL 73 AN SR R, B Ry AR AN S B BeAh, S EBURE SEIRTESE T SRR WP K &
TR G R E A BOREENE, AT 22 SECR . R AR AR AT 24 [ (ANB < 1)3R 5,
AR Armijo 1 BE S E CRESSR AU RTSE T, AR R S AE A THSOT 4, i — 20 WAUE = T
R T SR R R R R

5. &g

KRR T —FEET Armijo 2848 &R VI 2 M EE /M BE S5 (R-SSEG) o B2 0137 1 R FH R
D12 A 2R P 4540 5 KKT 264F, #ESH T IEP I ERAAE, ERER RS T R R, @
i Armijo A ARAE T IEAXT A1 Re B FE AT SO SR 254 T I Q-G sl e . O U
SEHIESS, R-SSEG 1EIB K ik FEMRIT, AH LG T2 MU iy B & B KB R I 2 3 R 35
X R AMH L T B TR 45 G Ao i 248 2R R AL AL B = 4 52 4 U7 i) i rp AR, oA Rk
SEA BRI H AR B 2 Stiefel 55— M2 2L W IR AL T RS ) SRV 4L 5 BR A o

&5k
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