Pure Mathematics 327, 2026, 16(2), 101-118 Hans X
Published Online February 2026 in Hans. https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2026.162038

it

R - RFHEI ARG RAEY

—Hn-FhEF:

®ER, B
R R 2RI 228, WIRE fTRH
Weks B 20254612 H31H; sHHHBE: 2026461 H29H; KA HE: 202652 H6H

=

AR — KRR - REEI RGN LPLREAY. BEWEES K Liapunovik$, Z/HIt6A
ABEZ ARG RE— ERRFEENRAEHA T, PR RSB RB ERZRENL R E A
WK, HREFAMTR R ERRENZBENERE RS, HE I LRI ISR RS R ER%
PRI B, B BEBRBIERITBLE LK R,

XKiEid
REALREALE, R - EF RS, LiapunoviRi¥l, HEEN

Research on Persistence of a Class of
n-Species Predator-Competition
Stochastic System

Haihua Tan’, Xinyuan Liao*

School of Mathematics and Physics, University of South China, Hengyang Hunan

Received: December 31, 2025; accepted: January 29, 2026; published: February 6, 2026

Abstract

This paper studies the almost inevitable persistence of a class of N-population predator-competitive
stochastic systems. By constructing an appropriate Liapunov function and applying the It6 formula,
the existence of the globally unique positive solution and the ultimate random boundedness of the
system are obtained. The sufficient condition for the persistence of the random system is obtained
by using the non-negative half-martingales convergence theory, and this sufficient condition for
persistence is extended to the random nonlinear system. And it is obtained that the stochastic
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nonlinear system satisfies specific conditions and becomes extinct with a probability of 1. Finally,
the correctness of the conclusion we reached was verified through numerical simulation.
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1. 5|15

FESERRINAERS RGEH, AR B TE S R R R R, AR — SRR L ) — e
B3 M BEN RIS . RS FHRI T, ZYMEEA AR 0030 1 RS R R R 2 FEE 4
FELAD . FRFEh SRR KBS R A ORI ANy — R e RIS, TR AR
HEAHEESILE L A, MIrAMBEGAEREL T, EEERTETRERE, 24
SRGFUSES YR L IIRERTATHR, € LU R ST AR & 1 5 R S W E MR VE HR T T DU R I3 A7
MIES. L, R 0 MEEHE - SeF RGAEMTR I TR S AYE, APCEECRESFH I —4
WRZNMER I, 3T EAREY ZFEERGERIR. VRIS RGNS T DL E R O fR 3 S th B
B SIME-

VF2 2300 n-RRE BT 98 LSRR A D7 T C8 i 1 W2 AT S R, B, Li S0 1 — 284k
AY B 0 MRS S RA R AN, 83T M3& Lyapunov ML K G AR FE AR EZ RS n Fh
HERAFFGEA TR 26 AF (1] Shi SEEIE AL RARKMER & - 589 R4, A RLEIES LA W
ot ERAEF RN NTEIE T, B3] 7RS0T AR AE TS 0 PR F[2]. Wang SERTST T —3K
HA AR TS R S8, 93] 75— MMRERERI TS0 210, By 77 RE LU REE BT — 2593
M ry, i — R4 5 ARG AR KA PERUEW][3]. Chen S5EH0TA SN B9 n IR & - 45
PR T 5T, A 3 1 A B S 1 I TR AR AU 5 AR SR IR SR IR A A Il I BB AR T 1
BB Z R [4]. Tuerxun Nafeisha Z[SIHE 72 n ¥)FBENL I EERY, SIAFAMEAE S Levy Bk, @i
KRB EGE SREN o TR S, @ RGN RN %, BUEBHISIE 7 BB R (5], Jiang
Zhao ZFWTFT 1 —2& n ¥J# Lotka-Volterra S /FAA, 51N S22 220 i, MR 0 AN R
LR B & Lyapunov-Razumikhin 777%, 3 R G 2 /WG 7 AN A I AAAEE 261, IRl
A HUE S B RAE A R K SR [6]0 Li MBI — 3 n FAEE & - 525 R 48, MAIIE Lyapunov PR4L
CAR Ay AN A 2 T2 RSB R (K 2 R Ae g PE 78 20 26 AF (7] Seno H 5L T —K n 254-1 i &
# 1] Lotka-Volterra 24, W FUAE M) 1A 1 36 54 0 7 A (R LS8 4 RORE, 5 AT -7 s T A
MR %A, W E R KA B 28] T BA TN AE R — R R - 58
%/\g}l:;:

n-1

ax, ()= x, (r){—bn 0+ 80, (0, (0)-a, (1) X, Mdr,
1)

n

dx, (1) = X, (t){bi (1)-2a; ()X, (t)}dt (1<i<n-1),
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Horp X, A EFBEER 2 RS X, (1<i<n—1) N EEFBELER 2 ¢ (4% 2 ; i8I #)1% Liapunov i
B, B3 T ZRGEN —BOFLLAA A RENEAE € 787 55 AF[9]. RAEBEHL n R AT 5T O HUS 3200
B, AES T BEALE A Ry e AR T e R B £ - SR, Bl AT A AR T S M AN TS 0
FESCBRELL T, BR T AR A AR TSN, PR A AR RE ) S h iR RAE . TSRS
AR B R R B3N, B SRR 1 R IV R . AEA SO JRA VB A 85 3 25 i 4
KERIET R, ERGE)IIER -, R
b,(t)—>b,(t)+0,(t)B(1).

P v 45 2 BEH L (SDE) % 7 A

n-l1

dx, (1)=X, (t)[—bn ()+>a,(1)X,;(t)-a, (1)X, (t):| dt—o, ()X, (¢)dB, (1),

- 2)

n

dx, (1) = X, (t){b,. (1)->a; (1) X, (t)}dwai (1)X,()dB (1) (1<i<n-1),

J=1

Herbt B (1) (i = 1,0+-,n) FORTE XAE— AN FE A HIMA 0 (U FAF ), P) LRGSR 8152 50

b(1), a,(1),0,(0) (i) =12, n) RIEFESH FEHG b, (1) RoRH T AFBKE (1=1,2,,n 1)

b, (6)FoRH n MRBEIET R a, (1) For i A j AFRERORP IR IE R A o, (¢) 30 0 ARV P 0
RSO RGO BT TR AT 2 411

5 Ui . a; = max a

1<i,j<n

A\

Vv
0<a; = min a,, a=max g
1<i,j<n 1<i,j<n

0<a=mina,, R'={XecR":X,>01<i<n}.

i’ v 1<i, j<n

2. FELZIPMER

2.1. & FM—IEREEY

GRS A A RGO R, Wi AR PP R ARBE L R 617 0 I T, I
ot L R G M IERREOETEREIE T, R H bt T R .

R 1. WHERSEII X (0) e RY , RAQUKMR | e 14 R EAR.

UER: BHSCHER[9]1Z A, RGQ)MFERNIE, Hi%RGH RE0H 2 )53 Lipschitz 2 £F, FUILX TR E
A X (0) € RY , FAEME— MRS ERR X (¢) 6 ¢ <[07,) b Shebr, BRI, T 0T 2R 4
M, Wi, = oo JLT BB

ﬁ@>oﬁ%ﬁ,ﬁ%xﬂn%ﬁﬁﬁ%%%EBﬁ{%kﬂwoﬁﬁ%%ﬁkz%,%X@N:

T, =inf{t e[O,z’e):xl.(t) e(%,k}i:l,...,n},

E X inf P =00 (HA @ RKIRTFE). B, HBhkoolt, ¢ BIHHEE, &7 =limz,, Wz, <7 JLFUAR
k p k e

RAL[10]. FHEE 7, = o0 JLTASRIRL, W7, = oo JLTBRIL, EMFIE 20, X(1)eR" JLTLAR
. FiE 7, = o0 JLTAIRL.

EXLCPEBV R, SR, V(t,X)zi[Xi(t)—l—log(Xi(t))]o Hu—1-log(u)>0(Hu>0H), A

v (X)AES. SV (¢,X) R Ito A 313
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- 3

NIIEE]

av =LV(X(t))dt+§o-l. (1) X.dB, (1) o, (1) X,dB, (¢).

BOWE IR 13
EV(X (2, AT)) =V (X,)+E[]"™ (L (X (1)))ds,

0

fEG)A, BRE
Sa, ()X, (1)-5b,()+a, (1) X, (6)=a, X, (1) +b, (1) <0,

n

jz_ianj ()X, ()X, (t)—jZ;X,(t)Zaﬁ(t)Xj(t)<()_

B LY (X (1)) R BGRET 13
(X () b3, (1)+ na T X, () + 1307 :[Z +ncvzjiXi(t)+%Zn:of (1),

TERFI >0 u<2[u-1-log(u)]+2, MIfi

LV(X(t))§(1v9+nzvz)i;X,.(t)+%i:o-f(t)s 2[Iv)+ncvz}[V(X)+nJ+%noff

'

\ \ \ \ 1
=2[b+na}V(X)+n{2b+2n+na+—no-f}=K1V(X)+K2.
2
ﬁnmq:z{zw;}o, Kz:n{zmzmn;%nﬂ>oa9115ﬁ%z, B X (1) e RY , BT/

EV(X(z, AT)) <V (0)+KE(r, aT)+KE[" ¥ (X (1))dr <V (0)+ K,T+K, | BV (X (7, nt))dr.

B Gronwall A~25 515
EV(X (7, AT)) <[V (0)+K,T " e))
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FERBI% 0= {7, ST, FHE3N T (0RL (r0) BTk, B, B

[V (0)+K,T]e" > E[1, .\ (0)V (X (z,,0)) | > P{z, < T}[(k —1—1ogk)AG—1+ logkﬂ.

K1, g R {r, <T} RIOTRWREEL £k >0 U]
lim P{z, <T}=0.

k—o
BT >0 RAEEM, W Plr, <ol =0, FiblP{z, —oo) =1. W%
2.2. FEILBEAER

BEATRNIRTC R GAEREHLIA BT HAKIARIUS, — A F IR0 17 BB 2 T oK - ZEREHLIRZN LT 5
RGO TTHIRBENS LRI SR FAE 2 5]t T JRATTHE N ORZLRTS I BEAL e 24 S 1

EX 1z LAHEEANM >0, fFEERBT=T(e)MC=C(e), HFAr2TH, REQ)MIMH X (1)
WA P(X (0)]2 C) <& B, MRRGQBEHLELH .

SEH 2: L a, >a, >0,(1<i<n—1)I, WRGQ)MMEZFELELA T,

UERA: %XU(X(t)):e‘ix,.(t):ze’V(X(z)) I, XU (X (1)) B 16 A5

dU = eZX ()+e'S X, (t){bi (t)—gaij ()X, (t)}dt

i=1

n=1

+e'X, (t){—b" (0)+2a,(1)X,(t)-a, (1)X, (t)} dt

J=1

+e’:lzlio; (1) X, (1)dB. (1)~ e'o, (1) X, (1)dB, (¢).

id
PO =3 e 0] .0~ S, (05,0 o, )] (0 S, (05,000, (02,00
LN(]
4U = F (X (1))dt+ 3.0, (1) X, (1) dB, (1) -, (1) X, (1)dB, (1) ®)
AN RH k> | X (0)] ) & U rk:inf{teR () 2k},
P )2 (05,0 .0~ Sa, (03, (0)

—¢ ;Xi ()X, (1)(a, (t)-a,(t)-¢a, (1) X, (1)
<e’(b[(t)+1)g)(i(t)—e’gt(izn“X,(t)j <K.

XF(5)FR 43 B A=A v] 45 3]

e EV (X (z, A1) <V (X,)+ K[ e'd
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Lk TEIGR, R
CEV(X(1))<V(X,)+Ke'. (6)

mﬁﬁ%x,w%de,A@ﬁﬂﬁuq[ix@szﬁﬁ@ﬂwﬁﬁm
E|X(t)|<EV(X(t)<V(x,)e" +K.

limsupE|X(t)| <K.

>

M HRIE Markov &=,
&

MER >0, FFAET >0, 42T, BlX(1)|<K+n. BRC=

P(lx(1)zC)< EX()| _K+n_ K+n__e

c ~ C 2K+n) 2
&
= e 2(K+ v
Zilk, SMEE >0, ;L T=T . C= ( ’7), M4 >T 8,
&

P(lx(1)zC)<e,
WEEE .
2.3. FEMFFA M

BENL R 2 SN IRAT B AR RGAERENL TP T iFesE v it 7 B2k . 28T, (U ENE RGURE
Fe A FHREE A, JATE RO RGAE SR G RREEAE A IR O/ — E IS 7 XA 3R A T3
— BT RGEQ)HIBEHLRR ALE
E 2[11]: MBEHLRG(Q2), HEREVIGRE X, eR,, HE X (1)= (X, (1), X, (1)) W2
0< hl;Illwani (¢)<limsup X, ()< as, i=12,-,n

WIFRZBENL R G LT RBEHLER A

SIE 2 [11] B A(r) MU (1) RPN ELEIERGEIE I RE(A4(0) = U (0) = 0 JLF-LIRILI), M (1) 72
AN SAEFES: R M (0) =0, B[M(1)]=0). &AL X (1) =X, + A(1)- U()+M(t)(X07'35||E’B’l
BENLAS D). 25 X (¢) S,

{hmA <o c{th(t) } {th(t)<oo} a.s.

t—>w [—0 >0

FEH 3 WY X (0)= X, >0 . £ 2B liminf (a, (1)) > 0,(1<i,j <n),

n—-1 A

liminf (4-o7 (t)-b,(¢)) >0, liminf (b, (¢)-07 (¢))>0,(1<i<n-1), Hr Sa,(t+T)D, =450,

>0 t—>o

0<D,=minX,(r+T) ., WRGQMIN X (¢) JLTKFABELE AbE, B

1<i<n

0 <liminf X, (1) <limsup X, (1) < as.

t—o >0
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s 1 liminf (5, (1)~o7 (1)) >0, liminf(4~0; (1)~b,(r))>0, Fliminf(a,(¢))>0, HIHHRISE
SCATHL: IHERR 6 >0, fFET>0, 525> TH, Hb(t+T)-0’(t+7)>&>0,
A=o, (t+T)=b,(t+T)>>0Ma, (t+T)>e>0 . LI AALH, WG
df(n(t)zf(n(t){—bn(t+T)+"Zianj(t+T))~(j(t) W (t+T)X, (t)}dt o, (t+T)X,(t)dB, (t),

O]

dXi(t)zf(,.(){ (1+7)- Za (1+7)% ()}dm;(,n) (1)dB,(1) (1<i<n-1),

Hp X()=X(t+T), B(t+T)=B (t+T)-B,(T). BB (t) &—AEA KT Hr I M 5F A iz 5 .
(1) EZEY] limsup X, (1) <o as,(1<i<n). H(7)A%I:

dx, (1) = X(t){ (t+T)- Za (t+T)X (t)}dt+0'(l+T) (1)dB (1) (1<i<n-1),
B f (LX) = X, (1), R4 1o A5U15:

(1)) =¢ X, (1) de+¢ {f([ (t)[bi (HT)—jZn;% (t+T)X, (t)]dt+0'i (t+T) X, (¢)dB, (1) |-

e X, (1)< X, (0)+C(e' —1)+M,(2).
X, (1)< X, (0)e” +C(1—e”)+M,. (t)e”

X (1)< X, (0)+C+M,(1).
Z(1)=X,(0)+C+M,(¢), H5IF 24
limsup X, (¢) <limsup Z, (t)<ooas. (1<i<n-1). )]

t—

1 (7) 7] 02

dx, (t):)?n(t)[—bn (t+7)+ S a, (t47)X (1) —a,, (1+T) %, (t)}dt—an (1+7) X, (1)dB, (1),

RiF 1t6 A F e X, (¢) HI45
d(e'X, (1) =¢'X, (t){—bn (t+T)+1+ nianj (t+T7)X,(t)-a,, (1) X, (t)}dt +o,(t+T)e'X, (¢)dB
B

X, (1)=X,(0)+[ X, (s){—bn (s+T)+l+ij‘a”j (s+T) X, (s)-a, (s+T) %, (s )}ds+Mn ().
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()AL X ()(1<i<n-1)H LR, Mﬁﬁ/\Za X, =B, BHA

T,()< X, (0)e "+ [ [X (s)-B-a, &’ (s)}ds v M, (1),

IR

X, ()< X,(0)+B"+M, (1), ©)

Horh B B HREIEHH . XF(8)MH I 2 W] 1§
limsup X, (£) <o a.s. (10)

HEE®), 10X (1<i<n)f
limsup X, () <o a.s. (11)

(2) HiE liminf X, (1) >0, a.s.
X RGGIHE ATTFEHATE: 23, (1)=X, (1) X,(6)>0,(1<i<n-1), f(1,y)= e“”_z_]y, (1)
XF (¢, y) R 10 A5

=S [e- 1) B0, (071 05 (07 00 0380 |
X ESM 0 50 B
[47 =[50 0) (05712 (s 7)-0)+ S 570 )
—;ﬁwa@+m%@w&@>
Forh c A NITERHL oM ”zl'jo’ (s+T)e®y, (s)dB, (s) »
liminf(bi(t)—af(t))>O,(1SzSn—l), i 45

t—>o©

i< 0] S 071 () Jas-ean 0
SJ.;ecle:l:y,- (s) Zaij (s+T)yj-_1 (s)}ds—cMi(t)

< .[;e“gyl_ (S)_anavi,-y;‘ (S)}dS—ch. (¢).

n-1
ey, (1) < e S, (1) 113
i=1

GE!
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Y, (1)<, (0)+C—ce™ M, (2).
Ho € HIEWEL 2Y (1)=,(0)+C—ce M, (¢), HFIHE 2 A3

limsup y, () <limsup¥, (1) <. as.

NI
_ 1 1
liminf X, (¢) = liminf —— > 0. as. 12
iminf X, (¢) = limin v () Tmswpy, () (12
[—0

YA SRRy, ()= X, (1) M g(ny,)=e"y, (1) B 10 AR, #HSE
W

n-l

d(ec'”yn (t)) =e™y, (t)-{cn +b, (14T)=>a, (t+T)y, (t)_l +a,, (t+T)y, (t)_1 +o, (1+ T)z}dt

—eo (t+T)y,(t)dB, (1).
1), (1)T&, X (1)(1<i<n-1)H R, KIAERRD, >0, Hy, (1) =X ()2D, . &

a, (1+T)D, = A, Xd(e™y, (1)) B4, FHLH

ey, (1)<, (0)+ ey, ()| ¢, +b, (s + T) = A+a,, (s+T)y, (s)" +0, (s+T)" |ds =, M, (¢).

n—

~
Il

e, LW/NOIER A, iliminf (4-0; (1)-b, (1)) >0, AT

ey, (1)< 3, (0)+ [ ¢ a, ds—c,M, (1) -
[ T 7

v, (t)Syn (O)—i—C’—chn (t),
HpC,,C" NIEEH, mlHE 2 nf

limsupy, (t)<o as.= liminf X, (¢)= liminf% >0. as. (13)
f—>00 t—© t—© yn

48012), (I3 (1<i<n)f
liminf X, (¢)> 0. (14)
HH(11). (14)ﬂf§°0<lirtninff(i(t)ﬁlimsupf(i (t)<oo as., M X, (1)=X,(t+T), HifiH

t—o

0 <liminf X, (¢) <limsup X, (1) <o a.s.
t—>o©

iFEE,
2.4. R

R LS S W AR PR A A 2 PR T ) B 25T 1T 5 0 0 RN 2 1 b P B R ()R LR M TR A, TR BE AL
REHY (2)4 & BAH N (1) Gilpin-Ayala 35 4+ BE LAY .

n—1

dx, (1) =X, (t){—b" (1)+ ;anj () X9 (t)-a,, (1) X (t)} di-o,(t)X,(¢)dB, (1),

(15)

n

dx, (1) = X, (t){b,. (1)-Da; (1) X! (t):|dl+0'[. (1) X, (t)dB, (1) (1<i<n-1).

J=1
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K 0 NIEFE, SECRMF RPN Q) 8, FZBR S H00 2 Mo, TS LT e B

FEH 4 WY X (0)= X, >0 . &S L liminf (a, (1)) >0,

mgglf( (022 (1) ()j>o, mgglf(bi()—ﬂa(t)j 0.(1<i<n-1), 3

n=1 A

Sa, (t+7)D! = 4(0)>05 0<D, =min X, (++7) - MRS X (1) LTLISEHIEALE, 1

1<i<n

0 <liminf X, (¢) <limsup X, (1) <o as.
>0

B AUERE 3 RALl, i R AR e T 45 2«

n-1

dx, ()= X, (t){—b" (t+T)+ Y a, (t+T) X! (t)-a,, (t+T) X! (t)}dt ~o,(1)X,(¢)dB, (1),

J=1

- n

dX,.(t):)”(,.(t){b[ (t+T)—Zay.(t+T))~(_f(t)}dt+a (t+T)X,(1)dB,(¢) (1<i<n-1).

=

(1) HHEIEY limsup X, (1) <oo as,(1<i<n). HI(16)AI%:

t—©

d)?,(t)zf(,(){ (1+7)- ZaU(I+T) ()}dt+og(t+T))~(()dE,(t) (1<i<n-1).

BERH S (1, X)

' X7 (1), M 160 243075

a(e/ X0 (1)) = R (1) de e [ ’(; )(Hb (1+T)+ H(Z_l)af(t—kT)—GZn:aij (Hr)frf(t)jdt

J=1

+0o,(t+T) X/ (¢)dB, (r)}

<o {xe (t)(1+6'b,. (t+T)+ 9(‘92‘1)03 (t4T)0a, (t+T) X’ (t)jdt

+0o, (t+T) X! (¢)dB, (r)}
JUEES)
d(e' X/ (1)) <e'K +¢'0o, (¢t+T) X7 (t)dB,(¢).
Rt fairs

' X! (1)

1

IA

X7 (0)+ [ e'Kds+[ 00, (s +T) X! (s)dB, (s)

X7 (0)+(¢' ~1)K + [, e'60, (s +7) X7 (s)dB, (s).
PRILRRLL e W15

X ()< X7 (0)e” +K(1—e”)+.[;e’v”¢90'i (S+T))?f (s)df? (s),

(16)

GIEES
X! (1)< X7 (0)+ K +[ e 00, (s+T) X! (s)dB, (s).
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L2z (1) =X/ (0)+K+[ e 00,(s+T) X! (s)dB,(s) , H13I7H 273

limsup X/ (¢) <limsup Z/ (t) <was.(1<i<n-1).

PNIIEE]
limsup X, (¢)<oo as.(l<i<n-1). 17
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t—o 10

ey 1 1
liminf X7 (¢) = liminf —— > — ——>0as.

-0 1wy ( ) llmsupyi (f)

t—
ESIIES)
liminf X,(£)>0 (1<i<n-1l)as. (22)
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AMECE 3 A 4): 0 <liminf X, (¢) < limsup X, (¢) < oo JLT- A IREAT
nae t—©

XRGU(15), SHOFAH L ER 4 FFAOLE 4), @i MATLAB BU{H i BT 11% R G BENLRF A
PeCiniEl s A1 6): 0 < liminf X, (¢) < limsup X, (¢) < oo JLF-AEARIL

Table 1. Model parameter settings
* 1. BERESHRE

YA RikA B
b(£)=0.9-+0.05sin(0.06¢) + 0.05c0s(/3 -0.04 ) X, MoK
b(r): WEMKEBER b, (r)=0.7+0.08sin(0.09)+0.06cos(v3 - 0.05¢) X, M
by (1) =0.15+ 0.07sin(0.08¢) + 0.03cos(/5 - 0.04) X, FET:H

a,,(¢) =0.3+0.03sin(0.05¢)

A4(): XERH a,,(¢)=0.06+0.02sin (0.03¢) X, M5EH &%
ay, (1) = 0.18 4 0.04sin (0.057 )
ay, (¢) = 0.08 +0.025in (0.03¢)
4,(t): TERE ay, (¢)=0.15+0.03sin(0.06¢) X, W38 HRH
ay, (£) = 0.21+0.02sin (0.04¢)
a,,(¢)=0.16+0.04sin (0.05¢)
4,(r): RERH ay, () =0.2+0.025in(0.047) X, I H 25
a,,(#)=0.25+0.03sin(0.05¢)
7, (f) = 0.08-+0.01sin (0.08¢) + 0.01cos (/3 - 0.06¢ )
o,: WRFETREL o,(1)=0.08+0.01sin(0.08¢) +0. 01cos(f-o.06z)
7, (t) = 0.08 +0.01sin (0.08) + 0.01cos /3 - 0.06¢
Table 2. 8=0.5 testsystem result data
®2. 0=05KWARGRERYE
X,(0)=2.5,X,(0)=2.5,X,(0)=1 At=0.01 0=0.5
B 1 hmmf(b (t)—%of(t)} 0.7928
o2 20t lirtlliwnf(bz (-2 (;)) 0.5534
AR N 0 A R ME AN A(0=0.5) 1.4373
il B A AT liminf (A(H)—%oj (t)—b,,(t)j 0.1743
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Figure 1. #=0.5 numerical simulation of stochastic persistence of a three-population random solution
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Figure 2. 6=0.5 stationary distribution histogram of the three populations
2. 0=05M=MBFROMESE
Table 3. =1 testsystem result data
#3. 0=1BRGEREIE
X,(0)=25,X,(0)=2.5,X,(0)=1 At =0.01 0=1
0+1
BiH 1 %1 hmmf(b (1) -—° (t)) 0.7903
.. o+1 ,
1 2 %A liminf [bz( )—— (t)j 0.5509
O ARE T W S d/IME AN A(0=1) 1.1759
. . 1
WaE &G liminf (A(ﬁ)—%oj(t)—b"(t)J 0.0933
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Figure 3. #=1 numerical simulation of stochastic persistence of a three-population random solution
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Figure 4. =1 stationary distribution histogram of the three populations
4. 0=1R=MBETROTERE

Table 4. 0=1.5 testsystem result data
Fa. 0=15RERELEREIE

X,(0)=2.5,X,(0)=2.5,X,(0)=1 At =0.01 =15
i1 % liminf (bl (2) —%aﬁ (t)) 0.7878

2 %0 liminf [bz (¢) —%aﬁ (t)J 0.5484

TR R A S d/IME A(0=1.5) 0.9311
e & liminf (A(él) —%oﬁ (1)-b, (t)) 0.0174
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Figure 5. 6 =1.5 numerical simulation of stochastic persistence of a three-population random solution
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Figure 6. 0=1.5 stationary distribution histogram of the three populations
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