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摘  要 

本文研究一类n种群捕食–竞争随机系统的几乎必然持久性。通过构造适当的Liapunov函数，运用Itô公
式得到该系统全局唯一正解的存在性和最终随机有界性，利用非负半鞅收敛理论得到该随机系统的持久

性充分条件，并将该持久性充分条件拓展到该随机非线性系统，并得到该随机非线性系统满足特定的条

件依概率1灭绝。最后，通过数值模拟验证我们所得结论的正确性。 
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Abstract 
This paper studies the almost inevitable persistence of a class of N-population predator-competitive 
stochastic systems. By constructing an appropriate Liapunov function and applying the Itô formula, 
the existence of the globally unique positive solution and the ultimate random boundedness of the 
system are obtained. The sufficient condition for the persistence of the random system is obtained 
by using the non-negative half-martingales convergence theory, and this sufficient condition for 
persistence is extended to the random nonlinear system. And it is obtained that the stochastic 
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nonlinear system satisfies specific conditions and becomes extinct with a probability of 1. Finally, 
the correctness of the conclusion we reached was verified through numerical simulation. 

 
Keywords 
Stochastic Persistence, Predator-Competition System, Liapunov Function, Numerical Simulation 

 
 

Copyright © 2026 by author(s) and Hans Publishers Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
 

1. 引言 

在实际的生态系统中，不同种群之间存在竞争关系是很普遍的，也往往存在着一些种群以另一些相

互竞争的种群为食的现象。在生态学理论研究中，多物种群落相互作用的动力系统是揭示生物多样性维

持机制、种群动态规律及生态系统持久性的核心课题。持久性作为一个关键的全局性概念，其研究具有

首要的理论与现实意义。持久性，即所有种群在初始存在的情况下，其密度长期远离零灭绝状态，是生

态系统得以延续和维持其功能的前提，它比局部渐近稳定性更能反映生物群落抵抗干扰和物种长期共存

的能力。因此，探究 n 种群捕食–竞争系统在何种条件下能够实现持久性，不仅是数学生态学中的一个

深刻的理论问题，对于理解生物多样性的起源、评估生态系统的脆弱性以及制定科学的保护策略也具有

重要的指导价值。 
许多学者对 n-种群的研究以及其持久性方面已经做了许多可喜的成果，例如，Li 等研究了一类非同

步扩散的 n 种群捕食竞争系统的持久性，通过构造 Lyapunov 函数以及微分不等式原理得到该系统中 n 种

群永久持续生存的充分条件[1]。Shi 等通过研究一类非线性捕食–竞争系统，当系数是连续的概周期函

数时，增长率可能为负的情形下，得到了该系统的周期性解和持久性充分性条件[2]。Wang 等研究了一类

具有时滞的两种群非线性竞争系统，得到了第二个种群灭绝的充分条件，由微分方程比较定理和一些分

析技巧，通过一系列引理最终获得第二个种群灭绝性的证明[3]。Chen 等针对有界域内的 n 物种捕食–猎

物模型展开研究，通过构造正解或拟解建立了时间依赖解与稳态解的关联条件，并通过数值模拟验证了

理论结果[4]。Tuerxun Nafeisha 等[5]构建了一类 n 物种随机食物链模型，引入白噪声与 Lévy 跳跃，通过

发展辅助函数法与随机微分方程理论，建立系统的全局随机动力学，数值模拟验证了理论结果[5]。Jiang 
Zhao 等研究了一类 n 物种 Lotka-Volterra 合作模型，引入反馈控制项与连续时滞，利用积分不等式技术、

比较原理及 Lyapunov-Razumikhin 方法，推导出系统全局吸引性、持久性及周期解存在性的条件，并通

过数值案例验证结果的实用性[6]。Li 通过研究一类 n 种群捕食–竞争系统，利用构造 Lyapunov 函数

以及微分不等式得到了该系统的概周期解的全局稳定性充分条件[7]。Seno H 研究了一类 n 猎物-1 捕食

者的 Lotka-Volterra 系统，研究猎物间通过共享捕食者产生的表观竞争效应，推导可行平衡点渐近稳定

的充要条件，明确其决定猎物灭绝或存续[8]。于勇和于红两位学者提出的一类多种群非自治捕食–竞

争系统： 
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其中 nX 为捕食者种群在时刻 t 的密度； ( )1 1iX i n≤ ≤ − 为食饵种群在时刻 t 的密度；通过构造 Liapunov 函

数，得到了该系统的一致持续生存和全局渐近稳定的充分条件[9]。尽管随机 n 种群模型研究已取得丰硕

成果，但对于随机噪声特异性作用于捕食过程的捕食–竞争模型，其动力学行为的理论研究尚不充分。 
在实际情况中，除了生物种间相互作用外，环境噪声在种群动态中也起着关键作用。由于生态系统

中存在长期而复杂的环境波动，模型参数常常呈现出随机扰动特性。在本文中我们假设环境主要影响增

长率和死亡率。在系统(1)的基础上，假设： 

 ( ) ( ) ( ) ( ).i i ib t b t t B tσ→ +   

因而可得到随机模型(SDE)表示为： 
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其中 ( )( )1, ,iB t i n=  表示定义在一个完备的概率空间 { }( )0
, , ,t t
F F P

≥
Ω 上的独立标准布朗运动； 

( ) ( ) ( )( ), , , 1, 2, ,i ij ib t a t t i j nσ =  是正值连续有界函数； ( )ib t 表示第 i 个种群增长率 ( )1,2, , 1i n= − ； 

( )nb t 表示第 n 个种群死亡率； ( )ija t 表示第 i 和 j 个种群的种间作用系数； ( )i tσ 第 i 个种群噪声强度。 
本文将对系统(2)做出的研究在章节 2 给出。 
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2. 主要结论和结果 

2.1. 全局唯一正解存在性 

在研究复杂动态系统的过程中，唯一全局正解的存在性是理解随机系统行为的关键基石。因此，这

里先给出该系统全局唯一正解的存在性证明，为后续分析提供了稳固的起点。 
定理 1：对任意给定的初值 ( )0 nX +∈ ，系统(2)依概率 1 存在唯一的全局正解。 
证明：由文献[9]易知，系统(2)的解为正，且该系统的系数满足局部 Lipschitz 条件，因此对任意给定

的初始值 ( )0 nX +∈ ，存在唯一的局部正解 ( )X t 在 [ )0, et τ∈ 上，其中 eτ 为爆炸时间。要证明该解是全局

的，需证 eτ = ∞几乎必然成立。 

设 0 0k > 足够大，使得 ( )0X 的每个分量都落在区间 0
0

1 ,k
k
 
 
 

内。对每个整数 0k k≥ ，定义停时： 

[ ) ( ) 1inf 0, : , , 1, , ,k e it x t k i n
k
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定义 inf ∅ = ∞ (其中∅表示空集)。显然，当 k →∞时， kτ 单调递增。令 lim kk
τ τ∞ →∞

= ，则 eτ τ∞ ≤ 几乎必然

成立[10]。若能证τ∞ = ∞几乎必然成立，则 eτ = ∞几乎必然成立，且对所有 0t ≥ ， ( ) nX t +∈ 几乎必然成

立。下证τ∞ = ∞几乎必然成立。  

定义 2C 函数 : nV + +→  ： ( ) ( ) ( )( )
1

, 1 log
n

i i
i

V t X X t X t
=

=   − −∑ 。由 ( )1 log 0u u− − ≥ (当 0u > 时)，可

知 ( )V X 非负。对 ( ),V t X 应用 Itô 公式得： 
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因此对 ( )( )LV X t 利用放缩法可得 
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注意到当 { }k Tω τ= ≤ 时，存在某个 i 使得 ( ),i kx τ ω 等于 k 或
1
k
，因此，由(4)得 
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因为 0T > 是任意的，则 { } 0P τ∞ < ∞ = ，所以 { } 1P τ∞ = ∞ = 。证毕。 

2.2. 随机最终有界 

当我们深入探究系统在随机环境下的长期表现时，一个自然的问题随之而来：在随机扰动的情况下，

系统的解是否依然能够保持某种有界性？这就引出了我们接下来要探讨的随机最终有界性。 
定义 1：若对任意小的 0ε > ，存在正常数 ( )T T ε= 和 ( )C C ε= ，使得当 t T≥ 时，系统(2)的解 ( )X t

满足有 ( )( )P X t C ε≥ < 成立，则称系统(2)随机最终有界。 
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令 k 趋于无穷大，可得 

 ( )( ) ( )0e e .t tEV X t V X K≤ +  (6) 

由范数定义，即若 nX ∈ ，其范数记为

1
22

1

n

i
i

X X
=

 
 
 

= ∑ 。从而式(6)可化简得出 

 ( ) ( )( ) ( )0 e .tE X t EV X t V x K−≤ ≤ +  

显然 

 ( )limsup .
t

E X t K
→∞

≤  

对任意 0η > ，存在 1 0T > ，使得当 1t T≥ 时， ( )X t K η≤ + 。取
( )2 K

C
η

ε
+

= ，根据 Markov 不等式

得： 

 ( )( ) ( )
( )

.
2 2

X t K KP X t C
KC C

η η ε
η

ε

+ +
≥ ≤ ≤ = ≤

+


 

综上，对任意 0ε > ，取 1T T= 、
( )2 K

C
η

ε
+

= ，则当 t T≥ 时， 

 ( )( ) ,P X t C ε≥ <  

证毕。 

2.3. 随机持久性 

随机最终有界性为我们理解系统在随机干扰下的稳定性提供了重要依据。然而，仅仅知道系统状态

是有界的还远远不够，我们更关心系统能否在随机环境中持续生存并保持一定的活力。这就促使我们进

一步研究系统(2)的随机持久性。 
定义 2 [11]：对随机系统(2)，若任意初始值 0

nX +∈ ，其解 ( ) ( ) ( )( )1 , , nX t X t X t=  满足 

 ( ) ( )0 inf suplim lim a.s., 1, 2, , .i it t
X t X t i n

→∞ →∞
< ≤ < ∞ =   

则称该随机系统是几乎必然随机持久的。 
引理 2 [11] 设 ( )A t 和 ( )U t 是两个连续的适应递增过程( ( ) ( )0 0 0A U= = 几乎必然成立)， ( )M t 是一

个实值连续局部鞅( ( )0 0M = ， ( ) 0M t =   )。定义非负过程 ( ) ( ) ( ) ( )0X t X A t U t M t= + − + ( 0X 为非负

随机变量)。若 ( )X t 非负，则 

 ( ){ } ( ){ } ( ){ }lim lim lim a.s.
t t t

A t U t X t
→∞ →∞ →∞

< ∞ ⊂ < ∞ ∩ < ∞  

定理 3 设初始值 ( ) 00 0X X= > 。若参数满足 ( )( ) ( )inflim 0, 1 ,ijt
a t i j n

→∞
> ≤ ≤ ， 

( ) ( )( )2infm 0li n nt
A t b tσ

→∞
− − > ， ( ) ( )( ) ( )2inf 0, 1 1lim i it

b t t i nσ
→∞

− > ≤ ≤ − ，其中 ( )
1

1
0

n

nj i
j

a t T D A
− ∧

=

∧
+ = >∑ ， 

( )
1

0 mini ii n
D X t T

≤ ≤

∧
< = + ，则系统(2)的解 ( )X t 几乎必然具有随机持久性，即 

( ) ( )lim li0 inf su am p .s.i it t
X t X t

→∞ →∞
< ≤ < ∞  
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证明：由 ( ) ( )( )2inflim 0i it
b t tσ

→∞
− > ， ( ) ( )( )2infm 0li n nt

A t b tσ
→∞

− − > ，和 ( )( )inlim f 0ijt
a t

→∞
> ，由极限的定

义可知：对任意的 0ε > ，存在 0T > ，使得当 t T≥ 时，有 ( ) ( )2 0b t T t Tσ ε+ − + > > ， 

( ) ( )2 0n nA t T b t Tσ ε− + − + > > 和 ( ) 0ija t T ε+ > > 。通过时间变换，可得  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1

1

d d d ,

d d d 1 1 ,

n

n n n nj j nn n n n n
j

n

i i i ij j i i i
j

X t X t b t T a t T X t a t T X t t t T X t B t

X t X t b t T a t T X t t t T X t B t i n

σ

σ

−

=

=

  
= − + + + − + − +  

  


  = + − + + + ≤ ≤ − 
 

∑

∑

     

    

 (7) 

其中 ( ) ( )X t X t T= + ， ( ) ( ) ( )i i iB t T B t T B T+ = + − 。显然 ( )iB t 是一个具有关于新滤波的性质布朗运动。 
(1) 首先证明 ( ) ( )sup a.s., 1lim i

t
X t i n

→∞
< ∞ ≤ ≤ 。由(7)可知： 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

d d d 1 1 ,
n

i i i ij j i i i
j

X t X t b t T a t T X t t t T X t B t i nσ
=

 
= + − + + + ≤ ≤ − 

 
∑      

设函数 ( ) ( ), et
if t X X t=  ，根据 Itô 公式得： 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

d e e d e d d .
n

t t t
i i i i ij j i i i

j
X t X t t X t b t T a t T X t t t T X t B tσ

=

  
= + + − + + +  

   
∑       

积分化简得 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )2
0

e 0 e 1 d ,
tt s

i i i i ii i iX t X b s T X s a s T X s s M t ≤ + + + − + + ∫     

其中 ( ) ( ) ( ) ( )
0

e d
t s

i i i iM t s T X s B sσ= +∫   。因而有 

( ) ( ) ( ) ( )e 0 e 1 .t t
i i iX t X C M t≤ + − +   

两边除以 et 可得 

( ) ( ) ( ) ( )0 e 1 e e .t t t
i i iX t X C M t− − −≤ + − +   

可得 

( ) ( ) ( )0 .i i iX t X C M t≤ + +  

记 ( ) ( ) ( )0i i iZ t X C M t= + + ，由引理 2 得 

 ( ) ( ) ( )sup sup a.s. 1l 1 .im limi i
t t

X t Z t i n
→∞ →∞

≤ < ∞ ≤ ≤ −  (8) 

由(7)可知： 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1
d d d ,

n

n n n nj j nn n n n n
j

X t X t b t T a t T X t a t T X t t t T X t B tσ
−

=

 
= − + + + − + − + 

 
∑       

应用 Itô 公式到 ( )et
nX t 可得 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1
d e e 1 d e d .

n
t t t

n n n nj nnj n n n n
j

X t X t b t T a t T X t a t X t t t T X t Bσ
−

=

 
= − + + + + − + + 

 
∑       

积分得 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

0
1

e 0 e 1 d .
ntt s

n n n n j n
j

jn nn nX t X X s b s T a s T X s a s T X s s M t
−

=

 
= + − + + + + − + + 

 
∑∫      
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由(8)可知， ( )( )1 1iX t i n≤ ≤ − 有上界，从而令
1

1

n

nj j
j

a X B
− ∨

=

=∑  ，因此有 

( ) ( ) ( ) ( ) ( )2
0

0 e e d e .
tt s t t

n n n nn n nX t X X s B a X s s M t
∧

− − − ≤ + ⋅ − +  ∫     

从而有 

 ( ) ( ) ( )0 ,n n nX t X B M t′≤ + +   (9) 

其中 ,B B′都是正常数。对(8)应用引理 2 可得 

 ( )l sup a.s.im n
t

X t
→∞

< ∞  (10) 

结合(8)，(10)对 ( )1 i n≤ ≤ 有 

 ( )l sup a.s.im i
t

X t
→∞

< ∞  (11) 

(2) 再证 ( )inf 0, a.s.lim iX t >  

对系统(3)的第二个方程进行变形：令 ( ) ( ) 1
i iy t X t −=  ， ( ) ( )0, 1 1iX t i n> ≤ ≤ − ， ( ) ( )

1

1
, e

n
ct

i
i

f t y y t
−

=

= ∑ ，

对 ( ),f t y 应用 Itô 公式得 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 2

1 1
d e d d .

n n
ct

i ij j i i i i i
i j

f c b t T a t T y t t T y t t t T y t B tσ σ
−

−

= =

  
= − + + + + + − +  

   
∑ ∑   

对上式从 0 到 t 积分 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

1
2 1

0 0
1 1

1

0
1

d e d

e d .

n nt t cs
i i i ij j

i j

n t cs
i i i

i

f y s b s T s T c a s T y s s

t T y s B s

σ

σ

−
−

= =

−

=

 
= − + − + − + + 

 

− +

∑ ∑∫ ∫

∑∫ 

 

其中 c取充分小的正常数， ( ) ( ) ( ) ( )
1

0
1

e d
n t cs

i i i i
i

cM t s T y s B sσ
−

=

= +∑∫  ，由 

( ) ( )( ) ( )2inf 0, 1 1lim i it
b t t i nσ

→∞
− > ≤ ≤ − ，因而有 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1
1

0 0
1 1

1
0

1 1

1
0

1 1

d e d

e d

e d .

n nt t cs
i ij j i

i j

n nt cs
i ij j i

i j

n nt cs
i ij j i

i j

f y s a s T y s s cM t

y s a s T y s s cM t

y s a y s s cM t

−
−

= =

−

= =

−

= =

∨

 
≤ + − 

 
 

≤ + − 
 
 

≤ − 
 

∑ ∑∫ ∫

∑ ∑∫

∑ ∑∫

 

由 ( ) ( )
1

1
e e

n
ct ct

i i
i

y t y t
−

=

< ∑ 化简得 

( ) ( ) ( ) ( )
0

1 1
0 e e d e .

n nt c s tct t
i i ij i

i j
y t y a s c M t−−

= =

∨
−≤ + ⋅ −∑∑∫  

可得 
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( ) ( ) ( )0 e .t
i i iy t y C c M t−≤ + −  

其中 C 为正常数，记 ( ) ( ) ( )0 e t
i i iY t y C c M t−= + − ，由引理 2 可得 

( ) ( )sup suplim lim . a.s.i i
t t

y t Y t
→∞ →∞

≤ < ∞  

从而 

 ( ) ( ) ( )
1 1inf inf 0. a.s.

sup
lim lim

limit t
i i

t

X t
y t y t→∞ →∞

→∞

= ≥ >  (12) 

对(7)第一个方程：构造倒数辅助函数： ( ) ( ) 1
n ny t X t −=  ，对 ( ) ( ), e nc t

n ng t y y t= 应用 Itô 公式，推导得

微分形式： 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 2

1
d e e d

e d .

n n

n

n
c t c t

n n n n nj nn n n
j

c t
n

j

n n

y t y t c b t T a t T y t a t T y t t T t

t T y t B t

σ

σ

−
− −

=

 
= ⋅ + + − + + + + + 

 
− +

∑


 

由(8)，(12)可知， ( )( )1 1iX t i n≤ ≤ − 有界，因此存在常数 0iD
∧
> ，有 ( ) ( )1

i i iy t X t D
∧− = ≥ 。令 

( )
1

1

n

nl i
l

a t T D A
− ∧ ∧

=

+ =∑ ，对 ( )( )d e nc t
ny t 积分，并化简得 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

0
e 0 e d .n n

tc t c s
n n n n n nn n n n ny t y y s c b s T A a s T y s s T s c M tσ− ≤ + ⋅ + + − + + + + − ∫  

取 nc 为足够小的正常数，由 ( ) ( )( )2infm 0li n nt
A t b tσ

→∞
− − > ，从而有 

( ) ( ) ( )
0

e 0 e dn n
tc t c s

n n nn n ny t y a s c M t
∨

≤ + −∫ 。 
因此可得 

( ) ( ) ( )0 ,n n n nt ty y C c M′≤ + −  

其中 2 ,C C′为正常数，由引理 2 可得 

 ( ) ( ) ( )
lim li 1sup a.s. infm l inf 0. a.m s.in nt tt n

t t
t

y X
y→∞ →∞→∞

< ∞ ⇒ = >  (13) 

结合(12)，(13)对 ( )1 i n≤ ≤ 有 

 ( )l inf 0.im iX t >  (14) 

由(11)、(14)可得 ( ) ( )lim li0 inf sum p a.s.i it t
t tX X

→∞ →∞
< ≤ < ∞  ，而 ( ) ( )i iX X t Tt = + ，因而有 

( ) ( )lim li0 inf su am p .s.i it t
tX tX

→∞ →∞
< ≤ < ∞  

证毕。 

2.4. 结论延拓 

为更真实反映自然种群在复杂环境中的动态平衡与波动和刻画种内或种间非线性竞争，下面将随机

模型(2)拓展到相应的 Gilpin-Ayala 竞争随机模型： 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1

1

d d d ,

d d d 1 1 .

n

n n n nj j nn n n n n
j

n

i i i ij j i i i
j

X X b a X a X t X B

X X

t t t t t t t

b a X t X B i n

t t t

t t t t t t t t

θ θ

θ

σ

σ

−

=

=

  
= − + − −  

  


  = − + ≤ ≤ − 
 

∑

∑
 (15) 
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其中θ 为正常数，参数条件同随机模型(2)一致，若该模型的参数满足相关条件，可得以下定理。 
定理 4 设初始值 ( ) 00 0X X= > 。若参数满足 ( )( )inlim f 0ijt

a t
→∞

> ， 

( ) ( ) ( )21inf 0
2

lim n nt
A t b tθθ σ

→∞

+ − − > 
 

， ( ) ( ) ( )21inf 0, 1 1m
2

li i it
b t t i nθ σ

→∞

+ − > ≤ ≤ − 
 

，其中 

( ) ( )
1

1
0

n

nj
j

ia t T D Aθ θ
−

=

∧∧

+ = >∑ ， ( )
1

0 mini ii n
D X t T

≤ ≤

∧
< = + 。则系统(15)的解 ( )X t 几乎必然具有随机持久性，即 

 ( ) ( )lim li0 inf su am p .s.i it t
tX tX

→∞ →∞
< ≤ < ∞  

证明：和定理 3 类似，通过时间变换可得到： 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1

1

d d d ,

d d d 1 1 .

n

n n n nj j nn n n n n
j

n

i i i ij j i i i
j

t t t t t t t

t

X X b t T a t T X a t T X t X B

X X b t T a t T X t tt t t tT X B i n

θ θ

θ

σ

σ

−

=

=

  
= − + + + − + −  

  


  = + − + + + ≤ ≤ − 
 

∑

∑

     

    

 (16) 

(1) 首先证明 ( ) ( )sup a.s., 1lim i
t

X t i n
→∞

< ∞ ≤ ≤ 。由(16)可知： 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

d d d 1 1 .
n

i i i ij j i i i
j

X t X t b t T a t T X t t t T X t B t i nθ σ
=

 
= + − + + + ≤ ≤ − 

 
∑      

设函数 ( ) ( ), et
if t X X tθ=  ，根据 Itô 公式得： 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

1

2

1
d e e d e d

2

d

1
e 1 d

2

d .

n
t t t

ii i i j

i

i ij
j

i i

t
i i i ii

i

i

i i

X t X t t X t b t T t T a t T X t t

t T X t B t

X t b t T t T a t T X t t

t T X t B t

θ θ θ θ

θ

θ θ

θ

θ θ
θ σ θ

θσ

θ θ
θ σ θ

θσ

=

 − 
= + + + + − +  

  


+ + 


−




≤ + + + + − + 

 


+ +






∑   

 

 

 

 

则有 

( )( ) ( ) ( ) ( )d e e e d .t t t
i ii iX t t BK T X t tθ θθσ≤ ++   

积分化简得 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0 0

0

e 0 e d e d

0 e 1 e d .

t tt
i i

t
i

s s
i i i

t s
i ii

X t X s s T X s B s

X K s T B s

K

X s

θ θ θ

θθ

θσ

θσ

≤ + + +

−= + + +

∫ ∫

∫

   

  

 

两边除以 et 可得 

( ) ( ) ( ) ( ) ( ) ( )
0

0 e 1 e e d ,stt t
iii

t
i iX t KX s T X s B sθθ θ θσ− − −≤ + − + +∫     

可得 

( ) ( ) ( ) ( ) ( )
0

0 e d .st
i i

t
i i iKX t X s T X s B sθ θ θθσ−≤ + + +∫     
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记 ( ) ( ) ( ) ( ) ( )
0

0 e dst
i i

t
i i iZ t X K s T X s B sθ θ θθσ−= + + +∫   ，由引理 2 得 

( ) ( ) ( )sup supli a.s. 1 1m lim
t t

i iX t Z t i nθ θ

→∞ →∞
≤ < ∞ ≤ ≤ − 。 

从而有 

 ( ) ( )sup a.s. 1 1 .lim i
t

X t i n
→∞

< ∞ ≤ ≤ −  (17) 

由(16)可知 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1
d d d ,

n

n n n nj j nn n n n n
j

X t X t b t T a t T X t a t T X t t t X t B tθ θ σ
−

=

 
= − + + + − + − 

 
∑       

应用 Itô 公式到 ( )et
nX tθ ： 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1

1
2

1

2

( ) ( )

1
e 1 d

2

1
d e e

( ) ( ) .

1 d
2

n
t t

n nj nn n j n

t
n n n

n
t

n n nj j nn n n

n n
j

j

t
n n n

X t X t b t T a t T X t a t T X t t T

t T e X t dB

X t b t T a t T X t a t T X t t T t

t T e X t B

t

d

θ θ θ θ

θ

θ θ θ

θ

θ θ

θσ

θ θ
θ θ θ

σ

θ θ σ

σ

θ

θ

−

∨

=

=

∨−

+ +

− 
≤ − + + + + − + + + 

− 
= − + + + + − + + + 


+ +






∑

∑

 

   

  

 

 

由(17)可知， ( )( )1 1iX t i nθ ≤ ≤ − 有上界，从而令
1

1
1

n

nj j
j

a X Bθ
− ∨∨

=

=∑  ，因此积分化简得 

2
10 0

( ) (0) ( ) ( ) ( ) ( ) ( ).
t tt s t s t

n n n nn n n n nX t X e e X s B a X s ds s T e X s dB sθ θ θ θ θθ θσ
∧

− − − ≤ + ⋅ − + +  ∫ ∫       

因此有 

 1 0
( ) (0) ( ) ( ) ( ),

t s t
n n n n nX t X B s T e X s dB sθ θ θθσ −′≤ + + +∫     (18) 

其中 1 1,B B′都是正常数。对(18)应用引理 2 可得 ( )suplim a.s.
t

nX tθ

→∞
< ∞ 因此有 

 ( )l sup a.s.im n
t

X t
→∞

< ∞  (19) 

结合(17)，(19)对 ( )1 i n≤ ≤ 有 
 ( )l sup a.s.im i

t
X t

→∞
< ∞  (20) 

(2) 再证 ( )infim a .l 0 .siX t >  

对(16)的第二个方程进行变形：令 ( ) ( )iiy t X t θθ −=  ， ( ) ( )0, 1 1iX t i n> ≤ ≤ − ， ( ) ( )
1

1
, e i

n
ct

i
f t y y tθ

−

=

= ∑ ，对

( ),f t y 应用 Itô 公式得 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

2

1 1

1
d e d d .

2

n n
ct

i ij j i i i
i

i i
j

f c b t T a t T y t t T y t t t T y t B tθ θ θθ θ
θ θ σ θσ

−
−

= =

 + 
= − + + + + + − +  

   
∑ ∑   

对上式从 0 到 t 积分： 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
2

0 0
1 1

1

0
1

1
d e d

2

e d .

n nt t cs
i i ij j

i j

n t cs
i i

i

i

i

f y s b s T c a s T y s s

s T B

s

y s

T

s

θ

θ

θθ θ
θ σ θ

θ σ

−
−

= =

−

=

 + 
= − + − − + +  

   

− +

+∑ ∑∫ ∫

∑∫ 
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其中 c取充分小的正常数， ( ) ( ) ( ) ( )
1

0
1

e d
n t cs

i i i
i

iM t s T y s B sθθ σ
−

=

′ = +∑∫  ，由 

( ) ( ) ( )21inf 0, 1 1m
2

li i it
b t t i nθ σ

→∞

 
 

+
> ≤


≤


− − 。因而有 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0 0
1 1

0
1 1

0
1 1

d e d

e d

e d .

n nt t cs
ij j i

i j

n nt cs
ij j i

i j

n nt cs
ij

i

j
i j

i

i

i

f y s a s T y s s M t

y s a s T y s s M t

y s a y s s M t

θ

θ θ

θ

θ

θ

θ

θ

θ

−
−

= =

−

= =

−
∨

= =

 
′≤ + − 

 
 

′≤ + − 
 
 

′≤ − 
 

∑ ∑∫ ∫

∑ ∑∫

∑ ∑∫

 

由 ( ) ( )
1

1
e e

n
ct c

i i
t

i
y t y tθ θ

−

=

< ∑ 化简得 

 ( ) ( ) ( ) ( )
0

1 1
0 e e d e .

n nt c s tct ct
iji i

i j
iy t y a s M tθ θ θ−− −

= =

∨
′≤ + ⋅ −∑∑∫  (21) 

可得 

( ) ( ) ( )0 e .c
ii i

ty t y C M tθ θ − ′≤ + −  

记 ( ) ( ) ( )0 e ct
i iiY t y C M tθ θ − ′= + − ，由引理 2 可得 ( ) ( )lim limsup sup a.s.

t t
i iy t Y tθ θ

→∞ →∞
≤ < ∞ 从而可得 

 ( )
( ) ( )

lim li 1 1inf inf 0 a.s.
s p

m
im uli

i i
t t

t

X t
y t y t

θ
θ θ→∞ →∞

→∞

= ≥ >  

因而有 

 liminf ( ) 0 (1 1)a.s.it
X t i n

→∞
> ≤ ≤ −  (22) 

对(16)第一个方程：构造倒数辅助函数： ( ) ( )n ny t X tθ θ−=  ，对 ( ) ( ), e nc t
n ng t y y tθ= 应用 Itô 公式，推导

得微分形式： 

( ) ( )1
2

1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

( ) ( ) ( ).

n n

n

n
c t c t

n n n n nj j nn n n
j

c t
n n n

d e y t e y t c b t T a t T y t a t T y t t T dt

e t T y t dB t

θ θ θ θ

θ

θ θ
θ θ θ σ

θσ

−
− −

=

+ 
= ⋅ + + − + + + + + 

 
− +

∑


 

由(17)，(22)可知， ( )( )1 1iX t i n≤ ≤ − 有界，则存在常数 0iD
∧
> ，有 1( ) ( )i i iy t X t D

∧
− = ≥ 。令 

( ) ( )
1

1

n

nl
l

ia t T D Aθ θ
∧−

=

∧
+ =∑ ，对 ( )( )d e nc t

ny t 从 0 到 t 积分，并化简得 

( ) 2
0

1
( ) (0) ( ) ( ) ( ) ( ) ( ) ( ) ( ).

2
n n

tc t c s
n n n n n nn n n ne y t y e y s c b s T A a s T y s s T ds M tθ θ θ θ

θ θ θ θ σ− +  ′≤ + ⋅ + + − + + + + − 
 

∫  

取 nc 为充分小的正常数，记
0

( ) ( ) ( ) ( )n
t c s

n n n nM t e s T y s dB sθθσ′ = +∫  。由 

( ) ( ) ( )21inf 0
2

lim n nt
A t b tθθ σ

→∞

+ − − > 
 

，从而有 

0
( ) (0) ( ) ( ).n n

tc t c s
n n nn ne y t y e a t T ds M tθ θ θ

∨
′≤ + + −∫  
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从而可得 

 ( ) ( ) ( )0 ,nn ny t y C M tθ θ ′ ′≤ + −  

其中C′为正常数，由引理 2 可得 ( )supim a.s.l
t

ny tθ

→∞
< ∞ 因此可得 

( )
( )

lim lim 1inf inf 0 a.s
t tn

n

X t
y t

θ
θ→∞ →∞

= > , 

从而有 

 ( )l inf 0.im nX t >  (23) 

结合(22)，(23)对 ( )1 i n≤ ≤ 有 

 ( )l inf 0.im iX t >  (24) 

由(20)，(24)可得 ( ) ( )lim li0 inf sum p a.s.i it t
X t X t

→∞ →∞
< ≤ < ∞  ，由 ( ) ( )i iX t X t T= + 因此有 

( ) ( )lim li0 inf su am p .s.i it t
X t X t

→∞ →∞
< ≤ < ∞ 证毕。 

至于种群的灭绝性，本文给出简要探讨证明： 
定理 5 设初始值 ( ) 00 0X X= > 。若参数满足 ( )( )liminf 0

t ija t
→∞

> ， 

( ) ( ) ( )21inf 0
2

lim n nt
A t b tθθ σ

→∞

+ − − < 
 

， ( ) ( ) ( )21inf 0, 1 1m
2

li i it
b t t i nθ σ

→∞

+ − < ≤ ≤ − 
 

，其中 

( ) ( )
1

1
0

n

nj
j

ia t T D Aθ θ
−

=

∧∧
+ = >∑ ， ( )

1
0 mini ii n

D X t T
≤ ≤

∧
< = + 。则系统(15)的解 ( )X t 依概率 1 灭绝，即 

 ( ) 0lim .it
X t

→∞
=  

证明：对食饵的灭绝性，和定理 4 的(2)再证 ( )infim a .l 0 .siX t > 证明过程类似，且函数选取都不变，

令 ( ) ( ) ( )21inf 0, 1 1
2

lim i it
b t ic t nθ σλ

→∞

+= − − < ≤ ≤
 

= − 可同理得(21)，因而有 

( ) ( )
( )

( ) ( )
( )

( )
e e

0 e e 0 e e .
1t t

t
i

t
i i

t t
i i

K K
y t y M t y M t

λ λ
λ λ λθ λθ θ

θ θ

λ λ

−
′ ′≤ + − ≤ + −  

其中
1 1

n n

ij
i j

K a
∨

= =

= ∑∑ ，由 ( ) ( ) 0iiy t X tθ θ−= > ，所以 ( )l 0im
t iX tθ

→∞
= ， ( )lim 0it

tX
→∞

= 。( )1 1i n≤ ≤ − ，从而食饵种

群依概率 1 灭绝，从生态系统的角度出发，若所有食饵灭绝，则捕食者会因失去食物来源而导致灭绝。

对捕食者自身的灭绝性，同理和定理 4 的(2)再证 ( )infim a .l 0 .siX t > 证明过程类似，且函数选取都不变，

令 ( ) ( ) ( )21inf 0
2

limn n n
t

A t b tc θθ σ
→∞

+ − − < 
 

= ，最终可得 ( )lim 0nt
tX

→∞
= 。证毕 

2.5. 数值模拟 

本节对系统(2)和(15)通过数值模拟来说明白噪声的影响。 
对系统(15)，取适当的参数满足定理 4 的条件(见表 1、表 2)，通过 MATLAB 数值仿真可得该系统的

随机持久性(如图 1 和图 2)： ( ) ( )0 inflim limsupit t
it tX X

→∞ →∞
< ≤ < ∞几乎必然成立。 

对线性系统(2)，参数条件满足定理 3 的条件(见表 3)，通过 MATLAB 数值仿真可得该系统的随机持
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久性(如图 3 和图 4)： ( ) ( )0 inflim limsupit t
it tX X

→∞ →∞
< ≤ < ∞几乎必然成立。 

对系统(15)，参数条件满足定理 4 的条件(见表 4)，通过 MATLAB 数值仿真可得该系统的随机持久

性(如图 5 和图 6)： ( ) ( )0 inflim limsupit t
it tX X

→∞ →∞
< ≤ < ∞几乎必然成立。 

 
Table 1. Model parameter settings 
表 1. 模型参数设置 

参数类型 表达式 说明 

( )b t ：内禀增长率/死亡率 

( ) ( ) ( )1 0.9 0.05sin 0.06 0.05cos 3 0.04b t t t= + + ⋅  1X 的增长率 

( ) ( ) ( )2 0.7 0.08sin 0.09 0.06cos 3 0.05b t t t= + + ⋅  2X 的增长率 

( ) ( ) ( )3 0.15 0.07sin 0.08 0.03cos 5 0.04b t t t= + + ⋅  3X 死亡率 

( )1A t ：交互系数 

( ) ( )11 0.3 0.03sin 0.05a t t= +  

1X 的交互系数 ( ) ( )12 0.06 0.02sin 0.03a t t= +  

( ) ( )13 0.18 0.04sin 0.05a t t= +  

( )2A t ：交互系数 

( ) ( )21 0.08 0.02sin 0.03a t t= +  

2X 的交互系数 ( ) ( )22 0.15 0.03sin 0.06a t t= +  

( ) ( )23 0.21 0.02sin 0.04a t t= +  

( )3A t ：交互系数 

( ) ( )31 0.16 0.04sin 0.05a t t= +  

3X 的交互系数 ( ) ( )32 0.2 0.02sin 0.04a t t= +  

( ) ( )33 0.25 0.03sin 0.05a t t= +  

iσ ：噪声强度 

( ) ( ) ( )1 0.08 0.01sin 0.08 0.01cos 3 0.06t t tσ = + + ⋅  

 ( ) ( ) ( )2 0.08 0.01sin 0.08 0.01cos 3 0.06t t tσ = + + ⋅  

( ) ( ) ( )3 0.08 0.01sin 0.08 0.01cos 3 0.06t t tσ = + + ⋅  

 
Table 2. 0.5θ =  test system result data 
表 2. 0.5θ = 试验系统结果数据 

( ) ( ) ( )1 2 30 2.5, 0 2.5, 0 1X X X= = =  0.01t∆ =  0.5θ =  

食饵 1 条件 ( ) ( )2
1 1

1i fl in
2

m
t

b t tθ σ
→∞

+ − 
 

 0.7928 

食饵 2 条件 ( ) ( )2
2 2

1i fl in
2

m
t

b t tθ σ
→∞

+ − 
 

 0.5534 

食饵种群下确界最小值之和 ( )0.5A θ =  1.4373 

捕食者条件 ( ) ( ) ( )21inf
2

lim n nt
A t b tθθ σ

→∞

+ − − 
 

 0.1743 
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Figure 1. 0.5θ =  numerical simulation of stochastic persistence of a three-population random solution 
图 1. 0.5θ = 时三种群随机解的随机持久性数值模拟图 

 

 
Figure 2. 0.5θ =  stationary distribution histogram of the three populations 
图 2. 0.5θ = 时三种群平稳分布直方图 
 
Table 3. 1θ =  test system result data 
表 3. 1θ = 试验系统结果数据 

( ) ( ) ( )1 2 30 2.5, 0 2.5, 0 1X X X= = =  0.01t∆ =  1θ =  

食饵 1 条件 ( ) ( )2
1 1

1i fl in
2

m
t

b t tθ σ
→∞

+ − 
 

 0.7903 

食饵 2 条件 ( ) ( )2
2 2

1i fl in
2

m
t

b t tθ σ
→∞

+ − 
 

 0.5509 

食饵种群下确界最小值之和 ( )1A θ =  1.1759 

捕食者条件 ( ) ( ) ( )21inf
2

lim n nt
A t b tθθ σ

→∞

+ − − 
 

 0.0933 
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Figure 3. 1θ =  numerical simulation of stochastic persistence of a three-population random solution 
图 3. 1θ = 时三种群随机解的随机持久性数值模拟图 

 

 
Figure 4. 1θ =  stationary distribution histogram of the three populations 
图 4. 1θ = 时三种群平稳分布直方图 
 
Table 4. 1.5θ =  test system result data 
表 4. 1.5θ = 试验系统结果数据 

( ) ( ) ( )1 2 30 2.5, 0 2.5, 0 1X X X= = =  0.01t∆ =  1.5θ =  

食饵 1 条件 ( ) ( )1 1
21infl m

2
i

t
tb t θ σ

→∞

+ − 
 

 0.7878 

食饵 2 条件 ( ) ( )2
2 2

1i fl in
2

m
t

b t tθ σ
→∞

+ − 
 

 0.5484 

食饵种群下确界最小值之和 ( )1.5A θ =  0.9311 

捕食者条件 ( ) ( ) ( )21inf
2

lim n nt
A t b tθθ σ

→∞

+ − − 
 

 0.0174 
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Figure 5. 1.5θ =  numerical simulation of stochastic persistence of a three-population random solution 
图 5. 1.5θ = 时三种群随机解的数值模拟图 

 

 

Figure 6. 1.5θ =  stationary distribution histogram of the three populations 
图 6. 1.5θ = 时三种群平稳分布直方图 
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