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摘  要 

加速寿命试验是一种极为有效而经济的寿命试验方法，其中步加寿命试验又是比恒加寿命试验具有失效

更快与参试样品数更少的优点，因此被广泛应用。此文中解决了失效机理改变时步加寿命试验失效数据

的时间折算问题，给出了失效机理产生突变的Weibull分布定时和定数场合步进应力加速寿命试验的极

大似然估计。 
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Abstract 
Accelerated life testing is an extremely effective and economical method for life testing, among which 
step-stress accelerated life testing offers the advantages of faster failure occurrence and fewer test 
samples compared to constant-stress accelerated life testing, thus being widely adopted. This paper 
addresses the time transformation issue for failure data in step-stress accelerated life testing when 
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the failure mechanism changes, and provides maximum likelihood estimation for step-stress accel-
erated life testing under Type-I and Type-II censoring, where the failure mechanism undergoes an 
abrupt change and is modeled by a Weibull distribution. 
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1. 引言 

加速寿命试验是一种极为有效而经济的寿命试验方法，试验的目的是得到常应力下各种可靠性指标

的数据。在进行加速寿命试验时，一般要确定失效机理不变的一个大概范围。然后在失效机理不变的范

围内进行加速寿命试验，得到失效数据后进行参数估计，并利用加速方程外推到常应力水平，这类问题

的理论已日趋成熟，并在实践中开始得到应用和推行，详见文[1]。然而，本文考虑一种更复杂的情况：

在步进应力加速寿命试验过程中当应力水平达到某一点(称为变点)后产品的失效机理产生了突变(这在试

验中极有可能发生)，而且突变点是不知道的，我们希望利用有突变点的这类失效数据来进行参数估计，

以得到常应力下的各种可靠性指标。变点问题是近几十年统计界中的一个热门话题，在工业质量控制、

经济、金融、医学、计算机及可靠性等领域有大量的应用。研究方法有极大似然法、Bayes 方法、最小二

乘法等，见文[2]。在可靠性统计方面，文[3]讨论到 Weibull 分布变点问题的 Bayes 估计，文[4]提出了加

速退化试验变点模型的统计分析。文[5]给出了有一个突变点的 Weibull 分布场合恒加寿命试验的 Bayes
分析。本文中我们将续文[5]研究有一个突变点的 Weibull 分布场合步加寿命试验的参数估计。 

2. Weibull 分布场合步加试验安排与基本假定 

加速寿命试验有恒定应力加速寿命试验、步进应力加速寿命试验和序进应力加速寿命试验三种。步

进应力加速寿命试验，简称步加试验。它是先选定一组加速应力水平 1 2 lS S S< < < ，它们都高于正常

应力水平 0S 。试验开始时是把一定数量的样品都置于应力水平 1S 下进行寿命试验。经过一段时间，如

( )1 hτ 后，把应力提高到 2S ，将未失效的样品在 2S 下继续进行寿命试验。如此继续下去，直到有一定数

量的样品发生失效为止。  
在步加试验中，一个样品可能会遭遇若干个加速应力水平的考验。因此，相比恒加寿命试验，步加

试验可使样品失效更快一些，并可以减少参试样品个数，且比序加试验更容易实施，正是因为有这些优

点，步加试验被广泛应用，在组织与实施步加试验时应注意的事项请参考文献[1]。  

2.1. Weibull 分布场合步加试验的安排如下 

1) 确定正常应力水平 0S 和 l 个加速应力水平 1 2, , , lS S S ，这些应力水平一般应满足如下关系式：

1 2 lS S S< < < 。 
2) 从一批产品中随机抽取 n 个样品进行步加试验，每步对未失效产品继续在下一级应力水平下进行

试验。应力水平转换可以是定时转换，也可以是定数转换。 
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3) 对定时转换步加试验，事先要确定 l 个应力水平的持续时间 1 2, , , lτ τ τ ，未失效产品在加速应力水

平 iS 下工作 iτ 时间，不论失效多少，及时把应力水平提高到 1iS + ，然后继续试验，直到在 lS 下工作 lτ 时间

后才停止试验。 
4) 对定数转换步加试验，事先要确定 l 个失效数： 1 2, , , lr r r ，且 1 2 lr r r n+ + + ≤ ，然后要求在 iS 下

有 ir 个失效发生时把应力水平提高到 1iS + ，然后继续试验，直到在 lS 下再有 lr 个产品发生失效时就停止试

验。 
5) 设 n 个产品在 l 个加速应力水平 1 2, , , lS S S 下分别失效 1 2, , , lr r r 个，而在 iS 下 ir 个失效时间为 

1 2 , 1, 2, ,
ii i ir it t t i lτ≤ ≤ ≤ ≤ =  。 

当
iir it τ= 时，就是定数转换步加试验数据；当

iir it τ< 时，就是定时转换步加试验数据。这里失效时

间都是从应力水平提高到 iS 时开始算起。 

2.2. Weibull 分布场合步加试验的基本假定 

A1：在正常应力水平 0S 和 l 个加速应力水平 1 2, , , lS S S 下产品的寿命分布都服从威布尔分布 

( ),i iWei m η ，其分布函数为 

( ) 1 exp , 0, 1,2, ,
im

i
i

tF t t i l
η

   = − − > =  
   

  

其中诸 0im > 为形状参数，诸 0iη > 为特征寿命。 
A2：假定只存在一个突变点 S ′，且 1k kS S S +′< < (此处 k 未知)，在应力水平 0S 和 1 2 kS S S< < < 下

产品的失效机理不变，在 1 2k k lS S S+ +< < < 下失效机理也相同，而在 kS 和 1kS + 之间失效机理产生了突变。

由于威布尔分布的形状参数反映了失效机理，因此假定等价于 0 1 1k k lm m m m m+= = = ≠ = =  。 
A3：产品的特征寿命 iη 与所施加速应力水平 iS 之间满足加速模型 

( )ln , 0,1, 2, ,i ia b S i lη ϕ= + =  。 

其中 a 与 b 是待估参数， ( )Sϕ 是 S 的已知函数，若应力为电压电流等，则取逆幂率模型，若应力为温度，

则取阿伦尼斯模型。 
A4：产品的残余寿命仅依赖于当时已累积失效部分和当时应力水平，而与累积方式无关。 

2.3. 时间折算公式 

步加试验统计分析的难点在于观察得到的失效数据不是寿命数据，因此如何把失效数据折算成寿命

数据是解决此问题的关键。 
由假定 A4，产品在应力水平 iS 下工作 iτ 时间的累积失效概率 ( )i iF τ 等于此产品在应力水平 iS 下工作

某一段时间 ijτ 的累积失效概率 ( )i ijF τ ，即 

( ) ( ) , .i i i ijF F i jτ τ= ≠  

把 Weibull 分布的分布函数代入上式可得 

1 exp 1 exp
ji mm

iji

i j

ττ
η η

        − − = − −               
 

根据假定 A2， 0 1 1k k lm m m m m+= = = ≠ = =  ， 
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当 i jm m= 时，有 iji

i j

ττ
η η

= ， 

 ( ) ( )e i jb S Si
i ij ij

j

ϕ ϕη
τ τ τ

η
 − ⇒ = = 。             (1) 

当 i jm m≠ 时，不妨设 j im qm= ，有

ji mm
iji

i j

ττ
η η

  
=        

， 

 ( ) ( ) ( )1
e i ja q b S q Sq qi

i ij ijq
j

ϕ ϕη
τ τ τ

η
 − + − ⇒ = =           (2) 

(1) (2)两式即是两应力之间的时间折算公式。 
公式(1)适用于失效机理未发生变化的阶段。它表明，在较低应力 1iS − 下累积工作 t 时间所造成的损伤，

等同于在较高应力 iS 下工作一个更短的时间 *t 。这一折算系数 1i iη η− 完全由加速模型决定。公式(2)则适

用于失效机理发生突变后的阶段，此时不仅特征寿命比例变化，失效模式的变化(由形状参数 1m 变为 2m )
也参与了时间折算，使得累积损伤的等效关系更为复杂，折算公式中引入了形状参数的幂次运算。 

由前面的试验安排(5)，我们知道只有在应力 1S 下的失效数据是寿命数据，而在应力 2 , , lS S 下得到

的失效数据都不是寿命数据，因此我们先把应力 2 , , lS S 下的失效数据全部转换为应力 1S 下的寿命数据。  
由时间折算公式，当 i k≤ 时，由于失效机理不变，采用公式(1)进行转换，从 iS 的失效数据折算到 1S

的寿命数据的折算公式为 

( )

( ) ( ) ( ) ( )1 1

* 1 1 1 1
1 2 1

1 2 1

1
1 1

1

1

1

,

e e , 2, , ; 1, 2, , .i h

ij ij i
j i

i

ij h
hj h

i
b S S b S S

ij h i
h

t b k t

t

t i k j rϕ ϕ ϕ ϕ

η η η η
τ τ τ

η η η η

η η
τ

η η

τ

−
−

−

=

−
   − −   

=

= + + + +

= +

= + = =

∑

∑



 

 

当 1i k≥ + 时，由于存在突变点，在时间折算上要特别注意，在突变之前的折算用公式(1)，在突变之

后折算时要用公式(2)，因此从 iS 的失效数据折算到 1S 的寿命数据的折算公式为 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1

* 1 1 1 1 1
1 1 1

1 1 1
1

1 1 1

1 1

1
1

1
1

1

1

, , ,

e e

e , +1, , ; 1, 2, ,

i h

h

q q q
ij ij k k iq q q

ki k i
k i

q q
ij h hq q

h h khi h
k

a q b S S b S Sq
ij h

h
i

a q b S Sq
h i

h k

t a b q k t

t

t

i k l j r

ϕ ϕ ϕ ϕ

ϕ ϕ

η η η η η
τ τ τ τ

η ηη η η
η η η

τ τ
ηη η

τ

τ

+ −
+ −

−

= = +

−
   − + − −   

=

−
 − + − 

= +

= + + + +

= + +

= +

+ = =

∑ ∑

∑

∑



  .

 

这样我们得到了一个容量为 n ，取自 Weibull 分布 ( )1 1,Wei m η 的定数截尾“样本”，截尾数为 

( )1 2 lr r r r n+ + + = ≤ 。“样本”及其失效次序如下所示 

1 2

* * * *
11 12 1 21 2 1 .

lr r l lrt t t t t t t≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤     

它实际上并不是真正的样本，因为它们含有未知参数 , , ,a b q k 。 
以下为了书写的方便，我们把此寿命数据简单地表示为 

 1 2 rt t t≤ ≤ ≤     (3) 
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3. Weibull 分布步加试验数据的极大似然估计 

极大似然估计的数值求解算法可概述如下： 
步骤 1：对于给定的变点候选值 k  (即假设突变发生在第 k 个应力步)，利用 2.3 节中的时间折算公式

将所有失效数据折算至应力水平 1S ，形成“样本”序列(3)。 
步骤 2：将折算后的序列视为来自 Weibull 分布 ( )1 1,Wei m η 的一个前 r 个次序统计量的观测值。令

1m m= ， 1η η= 。基于次序统计量的联合概率密度函数，可写出包含所有未知参数 ( ), , , ,m a b q kθ = 的似然

函数形式如(4)所示 

 ( ) ( )
1

1

!, , , , exp exp
!

n rm mr
m h r
hm

h

t tn mL m a b q k t
n r η ηη

−

−

=

          = − ⋅ −       −            
∏     (4) 

对数似然函数为 

 

( ) ( )

( ) ( ) ( )
1 1

, , , , ln , , , ,

!ln ln ln 1 ln
!

m mr r
h r

h
h h

f m a b q k L m a b q k

t tn r m mr m t n r
n r

η
η η= =

=

   
= + − + − − − −   −    

∑ ∑
   (5) 

注意到： 

( )1 1ln ln a b Sη η ϕ= = + ( )1ea b Sϕη +⇒ =  

所以有 ( )1ea b S

a
ϕη η+∂

= =
∂

， ( ) ( ) ( )1
1 1ea b SS S

b
ϕη ϕ ηϕ+∂

= =
∂

。 

步骤 3：固定 k ，通过对数似然函数(5)对其余参数 , , ,m a b q求偏导得到的似然方程组(6)如下： 

 

( )

( ) ( )

( ) ( )

1 1

1 1

1 1

1

1
1

ln ln ln ln 0

11 0

11

m mr r
h h r r

h
h h

h rm mr r h r
h h r

h hh

mr
h h

h h

t t t tf r r t n r
m m

t tt tt t tf a amr m m n r m
a t a

t tf mr S m m
b t b

η
η η η η

η η η η

ϕ
η

= =

− −

= =

−

=

   ∂
= − + − − − =   ∂    

∂ ∂
− − ∂    ∂ ∂ ∂= − + − − − − =     ∂ ∂     
∂

 ∂  ∂
= − + − −   ∂ ∂   

∑ ∑

∑ ∑

∑ ( )

( ) ( )

1

1

1 1

1 1

0

11 0

h rmr h r
r

h

h r
m mr r

h h r

h hh

t tt ttb bn r m

t t
t t tf q qm m n r m

q t q

η η η

η η η η

−

=

− −

= =









 ∂

− −  ∂ ∂− − =  
  
 ∂ ∂

 ∂    ∂ ∂ ∂
= − − − − =     ∂ ∂     

∑

∑ ∑

     (6) 

(6)是超越方程组，需通过如 Newton-Raphson 法等数值迭代求解，得到给定 k 下的各参数估计记为(7) 

 ( ) ( ) ( ) ( )ˆˆ ˆ ˆ, , ,m m k a a k b b k q q k= = = =             (7) 

步骤 4：在变点参数 k 的合理整数取值范围内(通常为 2 1k l≤ ≤ − ，其中 l 为应力步数)进行一维搜索，

寻找使 

( ) ( ) ( ) ( )
ˆ ˆ

1 1

ˆ ˆ! ˆˆˆ ˆ ˆln ln ln 1 ln
ˆ ˆ!

m mr r
h r

h
h h

t tnf k r m mr m t n r
n r

η
η η= =

   
= + − + − − − −   −   

∑ ∑  

达到最大的 k̂ ，即为变点位置的估计。 
步骤 5：将 k̂ 代回(7)式，即可得所有参数的极大似然估计： ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ, , , ,k m m k a a k b b k q q k= = = = 。 
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进而利用加速方程外推可得到常应力 0S 下的各种可靠性指标。 

4. 仿真例子 

为验证本文提出的变点模型下 Weibull 分布场合步加寿命试验极大似然估计方法的有效性与可靠性，

为此设计并实施了蒙特卡洛仿真研究。通过模拟不同加速条件下的步加寿命试验数据，评估本文方法在

变点检测、参数估计及正常应力下可靠性指标预测方面的性能。 

4.1. 基本试验方案 

仿真模拟生成 40 个寿命服从 Weibull 分布的产品，进行 4 步定数截尾步加试验。具体设置如下： 
1) 样本量： 40n = ； 
2) 应力步数： 4l = ； 
3) 截尾方案：定数截尾，每步失效数 5ir = (即 1 2 3 4 5r r r r= = = = )，总失效数 20r = ； 

4) 加速模型：采用阿伦尼斯模型
1ln i

i

a b
T

η = + ，其中取： 17.636a = − ； 8000b = ； 

5) 温度应力水平设定(绝对温度，单位：K)： 
正常应力： ( )0 0298 K 25 CT S= =  ； 
加速应力 1： ( )1 1333 K 60 CT S= =  ； 
加速应力 2： ( )2 2353 K 80 CT S= =  ； 
加速应力 3： ( )3 3373 K 100 CT S= =  ； 
加速应力 4： ( )4 4393 K 120 CT S= =  ； 
6) 变点位置：失效机理在应力水平 2S 和 3S 之间发生改变，即变点 3k = ；  
7) 形状参数设定：变点前形状参数： 1 1.5m = ，变点后形状参数： 2 3.0m = 。 

4.2. 仿真结果与分析 

Table 1. Parameter estimation results for step-stress accelerated life testing under the Weibull distribution  
表 1. Weibull 分布步加寿命试验各参数估计结果 

参数 真实值 估计均值 标准差 偏差 RMSE 相对误差 

a  −17.636 −17.521 0.854 0.115 0.861 4.88 

b  8000 7963.2 312.6 −36.8 314.8 3.93 

1m  1.5 1.482 0.126 −0.018 0.127 8.47 

2m  3.0 2.974 0.214 −0.026 0.216 7.20 

0η  10000.0 9876.4 385.2 −123.6 405.8 4.06 

k  3 2.96 0.197 −0.04 0.198 - 
 

从表 1 可以看出，所有参数的估计偏差均接近 0，表明本文提出的极大似然估计方法具有良好的无偏

性，形状参数的估计精度相对较低，这与 Weibull 分布形状参数估计的固有难度相符，但仍处于可接受范

围。变点准确率达到 93.0%，表明本文方法能有效识别失效机理的突变点。 

5. 结论–展望 

本文针对失效机理可能发生突变的实际情况，研究了 Weibull 分布下步进应力加速寿命试验的统计

分析问题。通过引入变点模型，导出了分段形式的时间折算公式，并构建了相应的联合似然函数，提出
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了基于对数似然和数值优化的极大似然估计方法。模拟研究表明，该方法能够有效估计变点位置及各项

可靠性参数，为处理复杂失效数据的加速寿命试验提供了实用的解决方案。 
本研究仍存在一些值得进一步探讨的方向：首先，本文方法依赖于 Weibull 分布的假设，未来可研究

其他分布族(如对数正态分布、广义 Gamma 分布)下的变点模型。其次，极大似然估计在小样本下的性质

可能不佳，可考虑采用贝叶斯方法，引入先验信息以改善估计的稳定性。最后，本文假定变点位置与应

力水平挂钩且只有一个，对于多个变点或变点位置与累积损伤量相关的情形，将是更具挑战性的后续研

究课题。 
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