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摘  要 

本文以复可分Hilbert空间为研究背景，聚焦正交投影算子序列积的相关性质展开探究。记 ( )Hε 为该空

间全体正压缩算子的集合， ( )H 为全体正交投影算子的集合。对于 ( )A Hε∈ ， ( )B Hε∈ ，定义 

A B A BA
1 1
2 2= 为 A和 B 的序列积。研究借助空间分解的方法，推导并证明了正交投影算子序列积在幂

运算、广义逆存在性等方面的核心定理。 
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Abstract 
This paper takes the complex separable Hilbert space as the research background and focuses on 
exploring the relevant properties of the sequential product of orthogonal projection operators. Let 
( )Hε  denote the set of all positive contraction operators on this space, and ( )H  denote the set 

of all orthogonal projection operators. For ( )A Hε∈ , ( )B Hε∈ , the sequential product of A and B 

is defined as A B A BA
1 1
2 2= . By means of the space decomposition method, this study deduces and 

proves the core theorems of the sequential product of orthogonal projection operators in terms of 
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power operations and the existence of generalized inverses. 
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1. 引言 

设 H 是复可分的 Hilbert 空间， ( )B H 表示 Hilbert 空间 H 上的全体有界线性算子构成的 Banach 空

间。若算子 ( ) T B H∈ 满足 0 T I≤ ≤ 的正算子，则称  T 为 Hilbert 空间 H 上的量子效应。全体此类算子构

成的集合记为 ( )Hε ， ( ) ( ){ }: 0H T B H T Iε = ∈ ≤ ≤ 。在量子测量理论的框架下，若 ( )T B H∈ 同时满足
2 *T T T= = ，则T 被称为 sharp effects。 ( ) ( ){ }2 *:H T B H T T T= ∈ = = 表示 Hilbert 空间上所有 sharp 量

子效应集合，这与 Hilbert 空间上的正交投影算子集合相一致。若T 具有形式 
1 1
2 2T P Q P QP= = 。 

其中 P 和Q 为正交投影算子，则称T 是 almost sharp。若T 和 I T− 都是 almost sharp，则称T 是 nearly sharp。 

若 ( )T B H∈ ，则 ( ) ( ),R T N T 和 *T 分别表示T 的值域空间，零空间和共轭算子。若 ( )T Hε∈ ，用
1
2T

表示T 的正平方根。对于子空间 M H⊂ ，其正交补空间记为 M ⊥，闭包记为 M 。 
序列积是量子测量与量子信息理论的核心概念，Stan Gudder 和 Gabriel Nagy 于 2002 年在首次完成

了该概念的公理化定义，并对其代数结构展开深入分析，重点探讨了序列积交换性条件等基本性质[1]。
针对 almost sharp 算子的判定，文献[2]给出充要条件：算子T 为 almost sharp 当且仅当T I≤ 且 

( ) ( )2dim dimR T T N T− ≤ ，同时该文献首次提出 nearly sharp 算子的定义。此外，杜鸿科教授团队在文献

[3]-[5]中围绕量子效应下确界的存在性问题开展研究，推导并证明了该问题的相关性质结论。 
下面给出广义逆的相关定义。设 ( ),T B H K∈ ， ( ),S B K H∈ 。若 

TST T= ， STS S= ， ( )*TS TS= ， ( )*ST ST= ， 

则称 S 为T 的 Moore-Penrose 逆，记为 †T ；若 

TS ST= ， STS S= ，TST T= ， 

则T 称为群可逆算子， S 称为T 的群逆，简记为T﹟；若 

TST T= ， ( ) ( )R S R T= ， ( ) ( )*N S N T= ， 

则T 称为核可逆算子， S 称为T 的核可逆，简记为T。 

2. 预备知识 

引理 1 [6]：设 ( )P H∈ ， ( )Q H∈ 。记 ( ) ( )1H R P R Q= ∩ ， ( ) ( )2H R P R Q ⊥= ∩ ， 

( ) ( )3H R P R Q⊥= ∩ ， ( ) ( )4H R P R Q⊥ ⊥= ∩ ， ( ) ( )5 1 2H R P H H= ⊕ ， ( ) ( )6 3 4H R P H H⊥= ⊕ ，则 

1 2 3 4 5 6H H H H H H H= ⊕ ⊕ ⊕ ⊕ ⊕  
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且 5 6dim dimH H= 。关于此空间分解， P 和Q 具有如下矩阵形式 

5
1 2

0
0 0

0 0
I

P I I  
= ⊕ ⊕ ⊕ ⊕ 

 
， 

2

1 3 * * 20 0
C CSR

Q I I
R CS R S R

 
= ⊕ ⊕ ⊕ ⊕ 

 
。 

其中 iI 表示子空间 ( )1,2,3,5iH i = 上的恒等算子。R 是从 6H 到 5H 的等距同构算子，S 和C 是 5H 上的自伴

算子，并且满足 50 S I≤ ≤ ， 50 C I≤ ≤ ， 2 2C S I+ = 以及 ( ) ( ) { }0N S N C= = 。 
引理 2 [7]：设 ( )A B H∈ 为正算子， k 是任意正整数。则以下结论成立： 

(1) ( )
1
kR A R A

 
⊆   

 
，且 ( )

1
kR A R A

 
=   

 
； 

(2) ( )R A 是闭当且仅当 ( )
1
kR A R A

 
=   

 
； 

(3) ( )R A H= 当且仅当 A 是可逆算子。 
引理 3 [8] 设 H 为 Hilbert 空间， ( )T B H∈ ， ( )S B H∈ 。若 S 为可逆算子，T 为 Drazin 可逆算子，

则 1S TS− 也是 Drazin 可逆算子，并且 ( )1 1D DS TS S T S− −= 。 

3. 主要结果及其证明 

定理 1：设 ( ),P Q P H∈ 。令 ( )T P Q Hε= ∈ 且 ( )I T I P Q Hε− = − ∈ ，则以下结论成立： 
(1) ( )T P H∈ 当且仅当对任意有限正整数 n ，均有 ( )nT P H∈ ； 
(2) ( )I T P H− ∈ 当且仅当对任意有限正整数 n ，均有 ( ) ( )nP I Q P P H− ∈ 。 
证明：若 ( )T P H∈ ，由引理 1 可得： 

2

1
0

0 0 0
0 0

C
T P Q PQP I

 
= = = ⊕ ⊕ ⊕ ⊕ 

 
  

对上述算子等式两边取 n 次幂（ n 为有限正整数），可得 

( ) 22

1 1
000 0 0 0 0 0

0 00 0

n n
n CCT I I

   
 = ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕     

 

显然 ( )nT P H∈ 。 
若 ( )I T P H− ∈ ，同理可得： 

( ) ( ) 22

2 3 4 2 3 4
000 0

0 00 0

n n
n SSI T I I I I I I

   
 − = ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕     

 

此外，易证 ( )I PQP P I Q P− = − ，因此 ( ) ( )n nI PQP P I Q P− = − 。结合 ( ) ( )n nI T I PQP− = − ，可得 

( ) ( )nP I Q P P H− ∈ ，即结论(3)得证。 
推论 1：设 ( ),A B Hε∈ 。则有以下等式成立 
(1) ( ) ( )2

2

n

n

A A A B A A B=  

 









，其中 n Z∈ 。 

(2) ( ) 2

2 1

n

n

A A A B A B
−

=


   
，其中 n Z∈ 。 
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定理 2：设 P 和Q 是 ( ) B H 中两个正交投影算子。令
1 1
2 2T P Q P QP= = ，则以下结论成立： 

(1) ( )P Q P Q P=   。 
(2) ( ) ( )P Q Q P Q P=    。 
(3) 2T Q T= 。 

(4) 
1 1
2 2P T T= ，并且 ( )

1
2R T R P

 
⊂  

 
。 

证明：(1) 由引理 1 中可知 
2

1
0

0 0 0
0 0

C
P Q PQP I

 
= = ⊕ ⊕ ⊕ ⊕ 

 
  

并且由 50 C I≤ ≤ ，可得 

( ) ( )
1 1
2 2 1

0
0 0 0

0 0
C

P Q PQP I  
= = ⊕ ⊕ ⊕ ⊕ 

 
  

从而 

( ) ( ) ( )
1 1
2 2

2

1
0

0 0 0 .
0 0

P Q P PQP P PQP

CI PQP P Q

=

 
= ⊕ ⊕ ⊕ ⊕ = = 

 

 



 

即证明 ( )P Q P Q P=  
。 

(2) 由引理 1 可得  

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 1
2 2

2

1 * * 2

4
2

1

0 0
0 0 0

0 0 0 0

0
0 0 0

0 0

.

P Q Q PQP Q PQP Q PQP

C CC CSR
I

R CS R S R

C
I PQP P QPQ P

P QPQ P Q P

= =

    
= ⊕ ⊕ ⊕ ⊕     

    
 

= ⊕ ⊕ ⊕ ⊕ = = ⋅ ⋅ 
 

= =

  

  

 

即证明 ( ) ( )P Q Q P Q P=    。 

(3) 基于空间分解
6

 1 ii
H H

=
= ⊕ ，可得 

1 1
2 2

2

1 * * 2

4
2

1

0 0
0 0 0

0

.

0 0 0

0
0 0 0

0 0

T Q T QT
C CC CSR

I
R CS R S R

C
I T

=

    
= ⊕ ⊕ ⊕ ⊕     

    
 

= ⊕ ⊕ ⊕ ⊕ = 
 



 

(4) 由空间分解
6

 1 ii
H H

=
= ⊕ ，可得 

1 1
2 2

1

0
0 0 0

0 0
C

PT I T 
= ⊕ ⊕ ⊕ ⊕ = 

 
。 
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即可得 ( )
1
2R T R P

 
⊂  

 
。根据上述计算，我们得到

1 1
2 2PT T= ，对等式两边同时取伴随，则有

1 1
2 2T P T= ，

可得
1 1 1
2 2 2PT P PT T= = 。 

定理 3：设T P Q=  ，其中T 为自伴算子且 P 和 ( )Q H∈ 。则 †T ，T﹟，T存在当且仅当 ( )R C 闭，

并且有以下形式： 

2
†

1
0

0 0 0
0 0

CT T I T
− 

= = ⊕ ⊕ ⊕ ⊕ = 
 

﹟ 。 

证明：基于空间分解
6

 1 ii
H H

=
= ⊕ ，我们有 

5
1 2

0
0 0

0 0
I

P I I  
= ⊕ ⊕ ⊕ ⊕ 

 
， 

2

1 3 * * 20 0
C CSR

Q I I
R CS R S R

 
= ⊕ ⊕ ⊕ ⊕ 

 
， 

1 1 2
2 2

1
0

0 0 0
0 0

C
T P Q P QP I

 
= = = ⊕ ⊕ ⊕ ⊕ 

 
 。 

则由 †T ，T﹟，T， 1T − 的定义可知有以下形式： 
2

†
1

0
0 0 0

0 0
C

T I T T
− 

= ⊕ ⊕ ⊕ ⊕ = = 
 

﹟ 。 
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