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摘  要 

研究了对偶复矩阵的笛卡尔分解的酉不变范数不等式。给出了对偶复矩阵的笛卡尔分解的定义。利用对

偶向量间的优超关系以及对偶复矩阵的Mirsky定理证明了对偶复矩阵的笛卡尔分解的一个酉不变范数

不等式。该不等式揭示了一个对偶复矩阵与其笛卡尔分解中两个对偶Hermite复矩阵的特征值的酉不变

范数的数量关系。 
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Abstract 
Unitarily norm inequalities for the Cartesian decomposition of dual complex matrices are studied. 
The definition of Cartesian decomposition of a dual complex matrix is defined. By using the majori-
zation relation between dual vectors and Mirsky theorem of dual complex matrices, a unitarily 
norm inequality for the Cartesian decomposition of dual complex matrices is proved, which reveals 
the quantity relation between the unitarily norm of a dual complex matrix and the two dual 
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Hermitian complex matrices in its Cartesian decomposition. 
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1. 引言 

1873 年，Clifford [1]给出了对偶四元数的概念。如今，对偶四元数代数已成为 Clifford 代数的一个非

常活跃的子代数。作为刚体运动中一个有力且简洁的数学工具，四元数代数在许多应用领域有重要应用，

如机器人[2] [3]、空间运动学[4]-[6]、航天学[7]-[9]等。近年来，关于对偶四元数代数在空间运动学和机械

系统等领域中的应用得到大量研究，如Yang和 Freudenstein [10]介绍了对偶四元数在空间机构中的应用，

且 Yang [11]将对偶四元数应用于队列机制；Yacob 和 Semere [12]利用对偶四元数来补偿机械加工工艺变

化；文[13] [14]利用对偶四元数标定空间运动学同时在串联机器人和平行机器人中实现；文[15]利用对偶

四元数提供了由天线护送的地面车辆组成的编队控制器。 
一个对偶四元数矩阵是元素全为对偶四元数的矩阵。目前，对偶矩阵的理论和计算已成功应用于多

个领域。由于对偶四元数代数的应用要求建立对偶四元数代数的理论基础，且相比于实矩阵和复矩阵，

对偶四元数矩阵的理论基础尚不成熟，所以迫切需要建立对偶四元数矩阵的基础理论和计算方法，如特

征值、奇异值、广义逆、范数、方程等。Luo 和 Qi [16]给出了对偶 Hermite 四元数矩阵的谱分解和一般对

偶四元数矩阵的奇异值分解；Ling，Qi 和 Yan [17]建立了对偶 Hermite 四元数矩阵的特征值的极大极小

定理；Ding 等[18]给出了计算。 
对偶四元数矩阵的奇异值分解的一种可行方法；Ding，Li 和 Wei [19]给出了对偶 Hermite 四元数矩

阵的特征值分解算法；Cui 和 Qi [20]给出了计算对偶 Hermite 四元数矩阵的主特征值的幂方法，并将此应

用于同时定位和映射问题；Ling，Pan 和 Qi [21]介绍了对偶四元数矩阵的一种新的度量函数，并引入了

两种可实现的近端点算法求解对偶四元数超定方程的逼近解；Ling，He 和 Qi [22]研究了对偶四元数的一

些基本性质，包括极分解定理、奇异值的极小极大定理和 Weyl 型单调不等式、谱范数和毕达哥拉斯定

理，以及最佳低秩逼近；Ling 等[23]建立了一般对偶四元数矩阵的 Von Neumann 型迹不等式和 Hoffman-
Wielandt 型不等式；此外，关于对偶四元数矩阵方程 AXB C= 的解的研究可见文[24]-[26]。 

笛卡尔分解是实矩阵和复矩阵中一种常见且重要的矩阵分解，但在对偶矩阵和对偶四元数矩阵中较

少提及。文[4]介绍了对偶矩阵的笛卡尔分解在空间运动学中的应用。例如，令 s ssA A A= + 为 A 的笛卡尔

分解，则在刚体有限位移中，A 的反 Hermite 部分常用于构造旋转矩阵 ( ) 21 sin 1 cos e ssA
ss ssQ A A φφ φ= + + − = 。

作为定义对偶复矩阵和对偶复向量的度量性质的重要工具，酉不变范数在最小二乘问题和最佳低秩逼近

问题中发挥着重要作用。此外，酉不变范数也常用于分析空间运动学中的刚体运动，如最小范数位移。

近年来，对偶四元数矩阵的酉不变范数得到关注，如 Cheng 和 Hu [27]研究了对偶四元数矩阵的酉不变范

数，并引入了对偶四元数矩阵的对称规度函数，同时研究了一些特殊的酉不变范数，如 Schatten-p 范数和

Fan-k 范数。本文利用对偶向量间的优超关系和 Mirsky 定理研究涉及对偶复矩阵的笛卡尔分解的酉不变

范数不等式，推广了复矩阵的情形(见文[28])。 
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2. 预备知识 

记为四元数组成的集合。一个四元数具有形式 1 20 3q iq q q qj k= + + + ，其中 20 1 3, , ,q q q q 是实数，

, ,i j k 是四元数的三个虚数单位，满足 2 2 2 1i j k= = = − ，ij ji k= − = ， jk kj i= − = ，ki ik j= − = 。一个对

偶四元数具有形式 1 2q̂ q q= + ，其中四元数 1q 和 2q 分别称为 q̂ 的可观部和无穷小部， 是对偶元，满足

0≠ 和 2 0= 。若 1 0q ≠ ，则称 q̂ 为可观的；若 1 0q = ，则 q̂ 为无穷小的。特别地，当 1q 和 2q 是复数时，

称 q̂ 为对偶复数；当 1q 和 2q 是实数时，称 q̂ 为对偶数。注意到一个对偶数 1 2a a a= + 可逆当且仅当 1 0a ≠ ，

此时， 1 1 2
1 1 2a a a a− − −= − 。分别记对偶四元数、对偶复数和对偶数的集合为  ，  和。元素分别取

自  ，  和的 m n× 的矩阵集合记为 m n×
 ， m n×

 和 m n× 。文[29]引入了两个对偶数间的全序关

系，令 ,in ist st na a a b b b= + = + ∈  ，其中 sta 和 stb 分别是 a 和 b 的可观部， ina 和 inb 分别是 a 和 b 的无穷

小部。若 st sta b> ，或 st sta b= 且 in ina b> ，则有 a b> 。a b= 当且仅当 st sta b= 且 in ina b= 。根据对偶数的全

序关系，可定义正对偶数和非负对偶数，即若 0a > ，则称 a 为正对偶数；若 0a ≥ ，则称 a 为非负对偶数。

若 a 为正可观的对偶数，则 insta a a= + 的平方根为 

2
in

st
st

a
a a

a
= + . 

一个复方阵 A 总可以表示为
* *

2 2
A A A AA i

i
+ −

= + ，其中 *A 为 A 的共轭转置矩阵，该分解称为 A 的笛

卡尔分解。同样地，一个对偶复方阵 instA A A= + 可以表示为 
* * * *

* * * *

2 2 2 2

2 2 2 2

,

in in

in i

st st st st in in

st st in st st inn

A A A A A A A A
A i i

i i

A A A A A A A A
i

i i

G iH

 + − + −
= + + + 

 
   + + − −

= + + +   
   
+



   

该表示称为对偶复方阵 A 的笛卡尔分解，其中G 和 H 为对偶 Hermite 矩阵，即满足 *G G= 和 *H H= 。 
矩阵 m nU ×∈  称为酉矩阵，如果 *U U I= ，其中 I 是单位矩阵。 m n×

 上的范数 . 称为酉不变的，

若 A UAV= 对任意的 m nA ×∈  和任意的酉矩阵 m mU ×∈  和 n nV ×∈  成立。用 ( )Rank A 表示矩阵 A
的秩， ( )k Aσ 表示 A 的第 k 大的奇异值， ( ) ( ) ( ) ( )( )T

1 2, , , nA A A Aσ σ σ σ=  表示 n nA ×∈  的奇异值向量。

( )k Aλ 表示对偶 Hermite 复矩阵 A 的第 k 大的特征值， ( ) ( ) ( ) ( )( )T
1 2, , , nA A A Aλ λ λ λ=  表示 n nA ×∈  的

特征值向量。本文总是将 m nA ×∈  的奇异值按降序排列为 ( ) ( ) { } ( )1 2 min ,m nA A Aσ σ σ≥ ≥ ≥ 。 

( )1 2diag , , , nd d d 表示以 1 2, , , nd d d 为对角元的对角矩阵， ( ) 1
n

iiitr A a
=

= ∑ 表示 A 的迹。 
Luo 和 Qi [16]给出了对偶 Hermite 四元数矩阵的谱分解，并说明对偶 Hermite 四元数矩阵的特征值全

为对偶数。由此可知，作为特殊的对偶四元数矩阵，对偶复方阵的特征值也全为对偶数。在本文中，对

于 n 阶复方阵 A G iH= + ，总是记 Hermite 矩阵G 和 H 的特征值为 jα 和 jβ ，1 j n≤ ≤ 。下面介绍几种特

殊的酉不变范数。对1 p≤ ≤ ∞， m nA ×∈  的 Schatten-p 范数[27]定义为 

( )
{ }

( )
{ }

1
min ,

1

1
min ,

1

, 0

, 0

m n p
p
j

j

m n p
p
j in

j

st

st

A A

A

A

A

σ

σ

=

=

 
≠  

 

 
=




=

 
 






∑

∑

若

若
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m nA ×∈  的 Fan-k 范数[27]定义为 

( ) ( )1
k

jjkA Aσ
=

= ∑ , { }1 min ,k m n≤ ≤ . 

特别地，当 1k = 时为 A 的谱范数，记为 2A ；当 { }min ,k m n= 时，为 A 的迹范数，记为 1A 。 
定义 2.1 令 n nA ×∈ 是非负对偶矩阵，若 A 的每行元素之和及每列之和都等于 1，则称 A 为双随机对

偶矩阵。 
令 n n

instA A A ×= + ∈  。若 A 是双随机对偶矩阵，则 stA 是双随机矩阵，且 inA 是每行元素及每列元素

之和为 0 的实矩阵。不难看出双随机对偶矩阵关于矩阵乘法是封闭的，即两个同阶双随机对偶矩阵的乘

积仍是双随机对偶矩阵。 
定义 2.2 给定向量 , nx y∈ 满足 1 2 nx x x≥ ≥ ≥ 和 1 2 ny y y≥ ≥ ≥ 。若对任意的正整数1 k n≤ ≤ ，有 

1 1
k k

i ii ix y
= =

≤∑ ∑ , 

则称 x 被 y 弱优超，记为 wx y 。若 wx y 且 1 1
n n

i ii ix y
= =

=∑ ∑ ，则称 x 被 y 优超，记为 x y 。 
下面给出本文所需的一些引理。 
引理 2.1 [30] 令 m nA ×∈  ， { }min ,p m n= 。则对任意的正整数1 k p≤ ≤ ，有 

( ) ( ){ }2min | 1, m n
k A A X Rank X k Xσ ×= − ≤ − ∈  . 

引理 2.2 [30] 令 ( )1 2diag , , , n n
nA d d d ×= ∈  。则 2 1

max jj n
A d

≤ ≤
= 。 

引理 2.3 [17] 对任意的 n nA ×∈  和1 i n≤ ≤ ， ( )
*

2i i
A A Aλ σ

 +
≤ 

 
。 

引理 2.4 [22] 设 m nA ×∈  ，则 

( ) { }Rank min : , ,m l l nA l A BC B C× ×= = ∈ ∈   . 

引理 2.5 [30] 令 , m nA B ×∈  ，则 

( )( ) ( )( )diag diagA B A Bσ σ− ≤ − . 

下面引理的证明和复矩阵类似，这里略去证明。 
引理 2.6 设 m nA ×∈  。则对于任意的正整数1 i n≤ ≤ ，有 

{ }1 2min : , m n
kA X k Y A X Y A ×= + = + ∈  . 

引理 2.7 [27] 令 , m nA B ×∈  。若 ( ) ( )k kA B≤ 对所有的 { }1 min ,k m n≤ ≤ 成立，则 A B= 对所有
m n×

 上的酉不变范数成立。 
引理 2.8 设 , nx y∈ ，若 x y ，则存在 n 阶双随机对偶矩阵 A 使得 x Ay= 。 
证：若 x y ，则对 n 用数学归纳法来证明存在双随机对偶矩阵 A 使得 x Ay= 。当 1n = 时结论平凡

地成立。假设结论对 1n− 中的向量成立。令 ( )T
1 2, , , nx x x x=  ， ( )T

1 2, , , ny y y y=  ，且不失一般性，假设

1 2 nx x x≥ ≥ ≥ 和 1 2 ny y y≥ ≥ ≥ 。首先由 x y 可知 1 1ny x y≤ ≤ ，因此存在某个正整数 2 k n≤ ≤ 使得

1 1k ky x y −≤ ≤ ，从而有 1 1ky x y≤ ≤ 对某个正整数 2 k n≤ ≤ 成立。若 1 ky y− 是无穷小的，即 1y 和 ky 都是无

穷小的，或 1y 和 ky 是有相同可观部的可观对偶数，则不难看出存在实数 0 1t≤ ≤ 使得 ( )1 1 1 kx ty t y= + − 。 

若 1 ky y− 是可观的，令 1 1

1 k

y xt
y y
−

=
−

，则 t∈，且 ( )1 1 1 kx ty t y= + − 。总言之，存在对偶数 0 1t≤ ≤ 使得 

( )1 1 1 kx ty t y= + − 。 
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令 ( )T
2 , , nx x x=  ，并记 

( )( ) ( )T T
2 1 1 1 2, , , 1 , , , , ,k k k n ny y y t y ty y y y y− += − + =   . 

下面验证 x y 。因为 1 1 1 2k ny y x x x−≥ ≥ ≥ ≥ ≥ ≥  ，所以对于 2 1m k≤ ≤ − ，有 

2 2

m m

j j
j j

x y
= =

≤∑ ∑ . 

对于 k m n≤ ≤ ， 

( )

( )

1 1
2 1 1

1
1

1

1
2 1 2

1

1

m m m

j j j
j j j

m

j k
j

k m m

j k j j
j j k j

x x x y x

y ty t y

y t y ty y y

= = =

=

−

= = + =

 

= − ≤ −

= − − −

= + − + + =

∑ ∑ ∑

∑

∑ ∑ ∑

 

当 m n= 时， 2 2
m m

j jj jx y
= =

=∑ ∑ 。又因为 x y ，所以有 x y 。由归纳假设，存在 1n − 阶双随机对偶

矩阵 A 使得 x Ay= 。定义 n 阶矩阵 ( )ijB b= 为 

, 1 ,
1 , 1, , 1,
1, , 1 ,
0, .

ij

t i j k
t i j k i k j

b
i j i i k

= =
 − = = = ==  = ≠ ≠


或

或

且

其他

 

则由于 t 是对偶数，不难验证 B 为双随机对偶矩阵。令
1 0
0

A B
A

 
=  
 

，则 A 为双随机对偶矩阵，且

x Ay= 。 

3. 主要结果 

本节利用对偶向量间的优超关系，以及 Mirsky 定理证明关于对偶复矩阵的笛卡尔分解的酉不变范数

不等式。 
定理 3.1 令 ( )1 2, , , n n

nA diag d d d ×= ∈  满足 1 2 nd d d≥ ≥ ≥ 。则 ( )k kA dσ = 对任意的正整数

1 k n≤ ≤ 成立。 
证：由引理 2.3，对任意的正整数1 k n≤ ≤ ， ( ) ( )k k kA d Aλ σ= ≤ 。同理， 

( ) ( ) ( )k k k kA d A Aλ σ σ− = − ≤ − = 。于是有 ( )k kd Aσ≤ 。 

另一方面，令 ( )1 1 2 1, , ,k kD diag d d d− −=  ，则矩阵 1
1

0
0 0
k

k

D
A −

−
 
 
 

 具有分解 

( )1
1 1 0

0
k

k k

D
A I−

− −
 

=  
 

. 

从而由引理 2.4 可得 ( )1 1kRank A k− ≤ − 。 
再由引理 2.1 和引理 2.2 可得 

( )k kA A X dσ
∞

≤ − = . 

综上所述， ( )k kA dσ = 对任意的正整数1 k n≤ ≤ 成立。 
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推论 3.1 对于任意的 Hermite 矩阵 n nA ×∈  ， ( ) ( )k kA Aσ λ= 对任意的正整数1 k n≤ ≤ 成立。 
令 [ ]0N 表示所有可观向量的集合。下面给出对偶 Hermite 复矩阵向量的一个优超关系。 
定理 3.2 设 , n nA B ×∈  为 Hermite 矩阵，则 

( ) ( ) ( )A B A Bλ λ λ− − . 

证：由引理 2.5，Mirsky 定理可以改写成 

 ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )1 1 2 2diag , , , n n wA B A B A B A Bσ σ σ σ σ σ σ σ− − − −  .   (1) 

再由定理 3.1 可知(1)式等价于 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1 2 2, , , n n wA B A B A B A Bσ σ σ σ σ σ σ− − − −  .   (2) 

令 ( )1max i n ia Aλ≤ ≤≥ ，
[ ]

( ) ( )
10

*

*max max ,max
i nx N

i

x A B x
b a B

x x
λ

≤ ≤∈

 − ≥ + 
  

，则 B bI+ 和 A aI+ 均为半正定矩阵，

且 ( )A aI B bI+ − + 也为半正定矩阵。 

在(2)式中分别用 B bI+ 和 A aI+ 代替 B 和 A 可得 

( ) ( ) ( ) ( )( ) ( )( )1 1 , , n n wA aI B aI A aI B aI A B a b Iσ σ σ σ σ+ − + + − + − + −  . 

对于半正定对偶复方阵，其奇异值等于特征值，所以由上式有 

( ) ( ) ( ) ( )( ) ( )( )1 1 , , n n wA aI B aI A aI B aI A B a b Iλ λ λ λ λ+ − + + − + − + −  , 

即 

( ) ( ) ( ) ( )( ) ( )1 1 , , n n wA B a b A B a b A B a bλ λ λ λ λ− + − − + − − + −  . 

又因为显然有 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1

1 1

, ,

, , ,

n n

w n n

A B a b A B a b

A B a b A B a b

λ λ λ λ

λ λ λ λ

− + − − + −

− + − − + −



 

 

综合可得 

( ) ( ) ( ) ( )( ) ( )1 1 , , n n wA B a b A B a b A B a bλ λ λ λ λ− + − − + − − + −  , 

即 ( ) ( ) ( )wA B A Bλ λ λ− − 。又因为 ( ) ( ) ( )tr tr trA B A B− = − ，从而有 ( ) ( ) ( )A B A Bλ λ λ− − ，证毕。 
推论 3.2 设 , n nG H ×∈  为 Hermite 矩阵，则对任意的正整数1 j n≤ ≤ ， 

 ( ) ( ){ } ( ) ( ) ( )1j n jG H G H G Hλ λ λ λ λ− ++ + +  .  (3) 

定理 3.3 令 n nA ×∈  且 A G iH= + 为 A 的笛卡尔分解，则有 

{ } { }2 2
1j n j jiα β σ− ++ 

, 

和 

{ }
2 2

1

2
j n j

j ji
σ σ

α β− + +  + 
  

 . 

证：在(3)式中分别用 2G 和 2H 代替 A 和 B 可得 
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( ) ( ){ } ( ) ( ) ( )2 2 2 2 2 2
1j n jG H G H G Hλ λ λ λ λ− ++ + +  , 

即 

 { } ( ) { }2 2 2 2 2 2
1j n j j jG Hα β λ α β− ++ + +  .  (4) 

令 1 2 3 4,j j j j j jq q q qα β= + = + ，则 

( )1 3 2 4

1 2 3 42 2
1 3 1 32 2

1 3

2 2
2 4 1 3

, 0,

, 0.

j j j j j j

j j j j
j j j j

j j

j j j j

i q q q q

q q q q
q q q iq

q q

q q q iq

α β+ = + + +

+
+ + + ≠ += 


+ + =







 

由此可知，
2 2 2

1 1j n j j n jiα β α β− + − ++ = + 和
2 2 2

j j j jiα β α β+ = + 。于是(4)式可改写成 

 { } ( ) { }2 22 2
1j n j j ji G H iα β λ α β− ++ + +  .  (5) 

注意到 *A A 是完美 Hermite 矩阵[1]，其特征值要么是正可观对偶数，要么是 0，且 A 的正可观奇异

值为 *A A 的正可观特征值的算数平方根，其余奇异值要么是正无穷小对偶数，要么是 0，从而有 

( ) ( )* 2
j jA A Aλ σ= 。又因为 ( ) ( )*

j jA Aσ σ= ，于是也有 ( ) ( )* 2
j jAA Aλ σ= 。 

不难看出，
* *

2 2

2
A A AAG H +

+ = 。在(4)式中分别用
*

2
A A

和
*

2
AA

代替G 和 H 可得 

( )
* * * *

2 2
12 2 2 2j n j j j

A A AA A A AAG Hλ λ λ λ λ− +

         + + +        
         

  , 

即 

 ( ) { }
2 2

1 2 2 2

2
j n j

jG H
σ σ

λ σ− + +  + 
  

  .  (6) 

于是从(5)和(6)可得 

{ } { }2 2
1j n j jiα β σ− ++  . 

和 

{ }
2 2

21

2
j n j

j ji
σ σ

α β− + +  + 
  

 . 

下面给出本文的主要结论。 
定理 3.4 设 n nA G iH ×= + ∈  ， ,G H 为 Hermite 矩阵。设 jα 和 jβ 分别是G 和 H 的特征值，且满足

1 2 nα α α≥ ≥ ≥ 和 1 2 nβ β β≥ ≥ ≥ ，则 

 ( )1 1diag , , 2n ni i Aα β α β+ + ≤   (7) 

对任意的酉不变范数都成立。 
证：首先证明不等式(7)对于谱范数成立。由引理 2.2 可知 12G α= ， 12H β= 。此外，由 

* *

,
2 2

A A A AG H
i

+ −
= =  
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可得 1 2 2G Aα = ≤ 和 1 2 2H Aβ = ≤ 。 

令 1 1 2q qα = + ， 1 3 4q qβ = + 。则 

( )11 1 2 11
1

2 11

sgn , 0,
, 0.

q q q q
q q

α
 + ≠=  =

若

若




 ( )3 3 4 3
1

4 4

sgn , 0,
, 0.

q q q q
q q

β
 + ≠=  =

若

若




 

其中 ( )sgn x 为符号函数，且 

( )
2 2 1 2 3 4
1 3 1 32 2

1 31 1 1 3 2 4

2 2
2 4 1 3

, 0,

, 0.

q q q q
q q q iq

q qi q iq q iq

q q q iq

α β

+ + + + ≠ ++ = + + + = 


+ + =






 

若 31 0q iq+ = ，则 21 2Aqα = ≤ ， 1 4 2Aqβ = ≤ 。此时， 2 2
1 1 2 4 22i q q Aα β+ = + ≤ 。 

若 31 0q iq+ ≠ 且 1q 和 3q 中有一个为 0，不妨设 1 0q = ，则 1 1 1 2i Aα β β+ = ≤ 。若 1q 和 3q 均不为 0，
设 1 22A p p= + ，由 1 2Aα ≤ 和 1 2Aβ ≤ 可得 { }11 3max ,qp q≥ 。若 31q q≠ ，则显然有 

2 2
1 3 12q q p+ ≤ ，从而有 1 1 22i Aα β+ ≤ 。若 11 3q pq= < ，同样显然有 1 1 22i Aα β+ ≤ 。若 

11 3q pq= = ，则只需比 1 1iα β+ 和 22 A 的无穷小部，即 

( ) ( )1 2 3 4 1 2 3 4
1 2 3 4 2 2 22 2

11 3

1 1 1 1sgn sgn 2
2 | | 2 2 2 2

q q q q q q q q
q q q q p p p

qq q

+ +
= = + ≤ + =

+
. 

综上可得， 1 1 22i Aα β+ ≤ 总是成立的，即不等式(7)对谱范数是成立的。 
接下来证明不等式(7)对于迹范数成立。为此，我们先证明这样的事实：对于两个对偶向量 

( )T
1 2, , , nx x x x=  和 ( )T

1 2, , , ny y y y=  ，其中 ix ， iy 要么为正可观对偶数，要么为 0。若 x y ，则 

  ( ) ( )T T

1 2 1 2, , , , , ,n w ny y y x x x   .   (8) 

事实上，若 x y ，则由定理 2.8 可知，存在双随机对偶矩阵 A 使得 x Ay= ，即对1 i n≤ ≤ ，有

1
n

i jj ijx ya
=

= ∑ 。由此不难验证 1
n

ij j ij a y x
=

≤∑ ，即 1
n

i ij jjx a y
=

− ≤ −∑ 。于是有 

1 1 1

n n n

x y y
A

x y y

     − − −
     

≤     
          − − −     

    . 

所以， ( ) ( )T T

1 2 1 2, , , , , ,n w nx x x y y y− − − − − −   ，这就证明了(7)。 

由定理 3.3 有 { }
2 2

21

2
j n j

j ji
σ σ

α β− + +  + 
  

 。将(8)应用于 { }
2 2

21

2
j n j

j ji
σ σ

α β− + +  + 
  

 可得 

{ } 2 2
1

1| |
2j j w j n jiα β σ σ − +

 
+ + 

 
 . 

特别地，有 2 2
11 1 1

1 2
2

n n n
j j j n j jj j jiα β σ σ σ− += = =
+ ≤ + =∑ ∑ ∑ 。这就证明了不等式(7)对迹范数是成立

的。 
由引理 2.7 可知，要证明不等式(7)，只需证明不等式对 Fan-k 范数成立即可。由引理 2.6，存在对偶

复矩阵 ˆ, n nX Y ×∈ 使得 A X Y= + 使得 ( ) 1kA X k Y
∞

= + 。令 

,X M iN Y P iQ= + = +  
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分别为 X 和Y 的笛卡尔分解。所以 ( )A M P i N Q= + + + 是 A 的笛卡尔分解。于是 

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

1

1 1 1

1 1 2

1 1
1

1 1
1

1 1
1

1 1
1

2 2 2

diag , ,

diag , ,

| |

k

n n

n n

k

j j
j

k

j j
j

k

j j
j

k

j j
j

A X k Y

M i N M i N

P i Q P i Q

M i N k P i Q

M i N k P i Q

M i N P i Q

M P i N Q

α β α β

α β α β

α β α β

σ σ σ σ

σ σ σ σ

σ σ σ σ

∞

=

=

=

=

 

= +

≥ + +

+ + +

≥ + + +

= + + +

= + + +

 ≥ + + + 

∑

∑

∑

∑





 

由文[30]中引理 8 和引理 9 可知 

( ) ( ) ( )
1

1max
j n

j jA B A Bσ σ σ
≤ ≤

− ≤ − . 

对任意的 , n nA B ×∈  成立，即，对任意的1 j n≤ ≤ ， ( ) ( ) ( )1j jA B A Bσ σ σ+ ≤ + . 
所以，由前面的验证可得 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 1
1

1

1 1

2

diag , , .

k

j jk
j

k

j j
j

n n k

A M P i N Q

M P i N Q

i i

σ σ σ σ

σ σ

α β α β

=

=

 ≥ + + +  

≥ + + +

= + +

∑

∑



 

这就完成了不等式(7)的证明。 
下面给出例子说明不等式(7)对于两类特殊的酉不变范数成立。 
例 3.1 令 

0 1 1 2 0 1 1
1 0 1 , 1 0 1

1 2 1 0 1 1 0

i i i
G i i H i i

i i i

+ − +   
   = − − = − −   
   + + +   

  
   
  

 

且 

( )
( ) ( )

( )

0 1 1 1 2
1 1 0 1 1

1 2 1 1 0

i i i i
A G iH i i i i

i i i i

+ + − + − 
 = + = + + − + + − 
 + + + + − 

 
 
 

. 

经计算可得G 的特征值为 

1 2 32, 1 1.1547 , 1 1.1547α α α= = − − = − +  . 

H 的特征值为 

1 2 32, 1, 1β β β= = − = − . 

于是 
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1 1 2 2 3 3
1.1547 1.15472 2, 2 , 2

2 2
i i iα β α β α β+ = + = + + = −  . 

A 的奇异值的可观部分别为 

( ) ( ) ( )1 2 37.4641 2.7321, 2 1.4140, 0.5359 0.7321st st st
σ σ σ= = = = = = . 

所以， 

( ) ( )1 1 2 2 3 3 1 1 12
diag , , 2 2 2.8280 2 3.8632sti i i iα β α β α β α β σ+ + + = + = = < = , 

即 ( )1 1 2 2 3 3 22
diag , , 2i i i Aα β α β α β+ + + < 。 
此外， 

( )

( ) ( ) ( )( )

1 1 2 2 3 3 1 1 2 2 3 31

1 2 3

diag , ,

4 2 5.6560

2 6.8978.st st st

i i i i i iα β α β α β α β α β α β

σ σ σ

+ + + = + + + + +

= =

< + + =

 

即 ( )1 1 2 2 3 3 11
diag , , 2i i i Aα β α β α β+ + + < 。 

一个有趣的问题是不等式(7)中等式何时成立，因此，我们提出如下问题： 
问题 3.1 刻画不等式(7)中等式成立的条件。 

4. 总结与展望 

本文围绕对偶复矩阵的笛卡尔分解及酉不变范数不等式展开研究。首先，明确界定了对偶复矩阵的

笛卡尔分解定义。其次，基于对偶向量间的优超关系、对偶复矩阵的 Mirsky 定理，结合谱分解、奇异值

分解等已有理论成果，通过推导，证明了一系列关键结论： 
(1) 对角对偶矩阵的奇异值等于其对角元的绝对值； 
(2) 对偶 Hermite 复矩阵满足 ( ) ( ) ( )A B A Bλ λ λ− − 的优超关系； 

(3) 在笛卡尔分解下，存在{ } { }2 2
1j n j jiα β σ− ++  和 { }

2 2
21

2
j n j

j ji
σ σ

α β− + +  + 
  

 的优超关系； 

(4) 核心成果：证明了对任意酉不变范数， 

( )1 1diag , , 2n ni i Aα β α β+ + ≤  

恒成立，该不等式清晰揭示了对偶复矩阵与其笛卡尔分解中两个对偶 Hermite 复矩阵特征值的酉不

变范数数量关联，成功推广了复矩阵的相关结论。 
基于上述工作，未来可进一步拓展该不等式的应用场景，如将其应用于空间运动学中的刚体运动分

析、最小二乘问题等实际领域；还可探索更高维度对偶矩阵或其他类型对偶代数结构下的笛卡尔分解及

范数不等式，完善对偶矩阵理论体系。 
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