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摘  要 

本文对六阶广义Boussinesq方程(带有高阶空间色散)进行了对称分析与守恒律的研究。首先，通过Lie对
称分析方法，给出了六阶Boussinesq方程的Lie对称分类定理。其次，基于Lie对称对六阶Boussinesq方
程进行了对称约化。最后，基于新守恒定理，构造了六阶Boussinesq方程的守恒律。由此，为进一步研

究六阶Boussinesq方程的精确解或近似解打好了基础。 
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Abstract 
This paper investigates the symmetry analysis and conservation laws for a generalized sixth-order 
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Boussinesq equation with high-order spatial dispersion. Firstly, using the Lie symmetry analysis 
method, the Lie symmetry classification theorem for the sixth-order Boussinesq equation is pre-
sented. Secondly, symmetry reductions are performed based on the obtained Lie symmetries. Fi-
nally, by applying the new conservation theorem, conservation laws for the sixth-order Boussinesq 
equation are constructed. Thereby, this work lays a foundation for further research on exact or ap-
proximate solutions of the sixth-order Boussinesq equation. 
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1. 引言 

伴随科技领域的飞速进步，生物学、物理学、工程学以及信息科学等多个领域涌现出大量复杂的非

线性问题，其中许多现象可以通过非线性偏微分方程(PDEs)进行数学描述。在此背景下，深入研究各类

非线性 PDEs 的性质与解法，对于深入理解其物理背景和理论机制具有重要意义。 
经过长期的研究积累，学者们已发展出很多种经典的 PDEs 求解方法，比如：Hirota 双线性方法[1]-

[3]，Darboux 变换法[4] [5]，Bäcklund 变换法[6]，Lie 对称方法[7]-[10]。在此之中，Lie 对称方法是挪威

的数学家 Sophus Lie 首次提出的研究 PDEs 的重要工具之一。该方法广泛应用于精确解的构造、方程约

化以及守恒律的构造，被认为是研究非线性 PDEs 最有力的数学手段之一。此外，PDEs 的对称性与守恒

律之间存在紧密联系，守恒律在分析方程的可积性、约化、解的稳定性以及数值计算等方面均具有重要

作用。目前，构造守恒律的主要方法包括：Nöether 定理[11] [12]，乘子法[13]，变分导数法[14]，新守恒

定理[15]-[17]等等。 
其中著名学者 Ibragimov [18] [19]在偏微分方程守恒律研究领域做出了开创性贡献。他通过引入 PDEs

系统 Lagrangian 函数的创新策略，首先利用 Euler 算子对系统进行变分分析，导出了完整的 PDEs 系统的

数学表达式。随后，他在 Nöether 定理的理论框架基础上进行拓展，提出了一种新的守恒律构造方法。这

一方法不仅适用于原 PDEs 系统，还能同时处理其共轭 PDEs 系统，从而建立了更完备的守恒律体系。该

定理在学术界被命名为 Ibragimov 新守恒定理。 
Lie 对称的应用于很多非线性模型中，如流体力学中的 Navier-Stokes 方程[20] [21]，非线性波动现象

Korteweg-de Vries (KdV)方程[22] [23]以及生物学中的反应–扩散方程[24] [25]。 
Boussinesq 方程是描述流体运动的一类重要数学模型。它由法国物理学家 Joseph Valentin Boussinesq 

[26] [27]于十九世纪提出，通过简化 Navier-Stokes 方程，在保留非线性效应和色散效应的同时，降低了计

算复杂度。Lie 对称在 Boussinesq 类方程中应用也很多，如水波模型中的 Peregrine 方程和 Nwogu 方程

[28]-[31]，二维 Boussinesq 方程和变系数 Boussinesq 方程[32] [33]，以及非线性光学中的 Boussinesq 方程

[34]等。 
Christou & Christov (2000)等人[35]在研究一维非线性晶格中的孤立波时，从离散方程通过多尺度展

开，系统地推导出了带高阶空间色散的六阶广义 Boussinesq 方程 

 ( ) 0.p
tt xx xxxx xxxxxxxx

u u u u uν γ+− − + =   (1) 
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在传统的 Boussinesq 方程中，非线性项 ( )p

xx
u 描述了介质对有限振幅波的响应，而色散项 xxxxu 则反

映了波的频率依赖性。此方程进一步引入了六阶空间导数项 xxxxxxuγ ，这通常对应于更高阶的色散效应。

六阶广义 Boussinesq 方程的 Lie 对称分析对该方程组的进一步研究至关重要。所以本文的主要目的是研

究该方程的 Lie 对称分析和守恒律。 
本文基于 Lie 对称分析[36]-[38]，研究了带高阶空间色散的六阶广义 Boussinesq 方程。具体内容安排

如下：第 1 章介绍 Lie 对称理论的预备知识；第 2 章方程组(1)的 Lie 对称；第 3 章给方程(1)的约化；第

4 章给出方程组(1)的守恒律。 

2. 预备知识 

我们考虑如下一般偏微分方程 

 [ ] ( ) ( ) ( )( )1 2, , , , , 0, 1, 2, ,sU u U x u u u u rσ σ σ= = =    (2) 

上式的自变量是： ( )1 2, , , nx x x x=  ，因变量是 ( )1 2, , , mu u u u=  ，其中 

 ( ) ( ) ( )
2

,i j ij j i j j
i i j

u uu D u u D u D D u
x x x

α α
α α α α α∂ ∂
= = = = =

∂ ∂ ∂
,  (3) 

 , 1, ,a a a
i i ij ijka a a

i j jk

D u u u i n
x u u u
∂ ∂ ∂ ∂

= + + + + =
∂ ∂ ∂ ∂

  .    

定义 1 如果一个单参数的 Lie 对称变换群 

 
( ) ( ) ( )
( ) ( ) ( )

* 2

* 2

, , ,

, , ,

x F x u x x u O

u G x u u x u O

ε εξ ε

ε εη ε

 = = + +


= = + +
  (4) 

使得 PDEs (2)不变，那么单参数 Lie 点变换群(4)称为 PDEs (1)的点对称，其中 ( ) ( ), , ,x u x uξ η 是关于

,x u 的光滑函数。对应的无穷小生成元如下 

 ( ) ( )
1 1

, ,
n m

i
i i

X x u x u
x u

α
α

α
ξ η

= =

∂ ∂
= +

∂ ∂∑ ∑   (5) 

相应的无穷小生成元(5)的 k 阶延拓为如下形式： 

 ( ) ( ) ( ) ( ) ( )
2 2 3 2

2 3 2

2 31
, ,

, ,

, 1
i i i k

i i i k

kk
i l j l j l l j l

i l j l j l j l

X X k
u u u u

α α αα
α α α αη η η η∂ ∂ ∂ ∂

= + + + + + ≥
∂ ∂ ∂ ∂



   (6) 

其中： 

 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2 2 11 2 1

3 3 1 21 2 3 1 2

1 2 11 2 1 2 1

1

2 1

3 2

1
, , , ,, , , , , ,

,

,

,

,

1, 2, , ; 1, 2, , ; 1, 2, , ; 1, 2, , .
kk k

j
i i i j

j
i i i ji i i

j
i i i i ji i i i i

k k j
ik ik i i i ji i i i i i

l

D D u

D D u

D D u

D D u

i n j n i n l k

α α α

α α α

α α α

α α α

η η ξ

η η ξ

η η ξ

η η ξ
−−

−

= −

= −

= −

= −

= = = =
 



   

  (7) 

3. 六阶广义 Boussinesq 方程(1)的 Lie 对称 

假设方程拥有的群是： 
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 x t uX
x t u

ξ ξ η∂ ∂ ∂
= + +

∂ ∂ ∂
  (8) 

无穷小生成元(8)的六阶延拓为： 

( )6 .u u u
x t tttttt

x t tttttt

X X
u u u

η η η∂ ∂ ∂
= + + + +

∂ ∂ ∂
  

其中各阶延拓系数的递推公式为： 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

,

,

.

u u x t
x x x x t x

u u x t
t t x t t t

u x t
tttttt t x t ttttt

tt
t

t
t

ttt

D u D u D

D u D u D

D u D u D

η η ξ ξ

η η ξ ξ

η η ξ ξ

= − −

= − −

= − −



 

考虑算子(8)和六阶延拓对 Boussinesq 系统(1)的作用，有 

 ( )

( )

2 2 2 2 4 6
6

2 2 2 4 6
0

0
p

tt xx xxxx xxxxxxxx
u u u u u

u u u u uX
t x x x x

ν γ

ν γ
− − + =+

 ∂ ∂ ∂ ∂ ∂
− − + + = ∂ ∂ ∂ ∂ ∂ 

  (9) 

结合对称性条件(9)与生成元(8)，得到关于 , ,x t uξ ξ η 的确定方程组： 

 
2 2

2 2

2

2

6 2 0

5 0, 2 0

0, 0

0,2 0

2 2 0, 0

u x t

u x u t

x t
x t

x t t x

u x t u
u

u x t

u u u u

u u

t x t x

u u u
u x t u

η ξ ξ

η ξ η ξ

ξ ξ

ξ ξ ξ ξ

η ξ ξ ηη

∂ ∂ ∂
− + = ∂ ∂ ∂

∂ ∂ ∂ ∂
− = − = ∂ ∂ ∂ ∂

∂ ∂ = =
∂ ∂

∂ ∂ ∂ ∂
+ = − =

∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂

− + − = =
∂ ∂ ∂ ∂

   (10) 

方程(1)的对称分类 

情况 1 当方程(1)中的 2p ≠ 时，求解该确定方程组得到： 

 1

3

,

.

x

t

c

c

ξ

ξ

=

=
  (11) 

其中 1 3,c c 为常数，对应的生成元如下： 

 1 2, .X X
x t
∂ ∂

= =
∂ ∂

  (12) 

情况 2 当方程(1)中的 2p = 时，求解该确定方程组可以得到： 

 

4
1

3 4

4 4

,
3

,
2 4

.
3 3

x

t

u

c xc

c c t
c c u

ξ

ξ

η

= +

= +

= − −

  (13) 
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其中 1 3 4, ,c c c 为常数，对应的生成元如下： 

 

1

2

3

,

,

2 4 .
3 3 3

X
x

X
t

xX t u
x t u

∂
=
∂
∂

=
∂
∂ ∂ ∂ = + + + ∂ ∂ ∂ 

   (14) 

4. 六阶广义 Boussinesq 方程(1)的相似约化 

本节仅考虑对情况二中生成元 3X 的相似约化： 
相应的特征方程可表示为： 

 d d d
2 4

3 3 3

x t u
x t u
= =

+
  (15) 

经过对特征方程(15)进行积分可得： 

 ( )1ln ln 2 4 ln
4

t u c= + +   (16) 

常数为 c，解出u 可得： 

 ( )41 2
4

u x g ζ = −    (17) 

其中 g 是任意函数，
3x
t

ζ = 是相似变量，代入原方程化简可得： 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

6 5 44 3 2 2

3 22

21 2 1

1 3 1 2 22 2

1 2

729 4374 81 10935 4374

324 14580 4374 9 81 3 3645 7290 729

6 162 1458 1458 8 9 9 2 9 2

3 9 4 9 2 3 2

3 2 1 2 0

g g g

g g

g g g g g

g g g g g g g

g g

γζ ζ γζ ζ νζ γζ γζ ζ

νζ γζ γ ζ ζ ν ζ γ γζ γζ ζ

ν γ γζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ

 

+ + + −

+ + − + + − + − +

+ + + − − + +

+ + + +

+ − =



  (18) 

为便于分析，首先考虑物理上合理的简化情形。取参数 0ν = ，(忽略相应色 c散效应)和 1ξ = ，方程

(18)简化为： 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

6 5 4 3 2

21 2 1 1

3 1 2 2

729 4374 6561 10206 9 2916

15 2 8 9 9 2 9 2 3

9 4 9 2 1 2 0.

g g g g g

g g g g g g g

g g g g g

γ ζ γ ζ γ ζ γ ζ γ ζ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

+ + + + −

+ − + + +

+ + − =

   (19) 

当参数满足特定关系时，存在精确解： 

情况 1：
1 , 0, 1

729
γ ν ξ= = = 方程简化为： 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

26 5 4 3 2 1 2 1

1 3 1 2 2

8 9 96 15 20 15 6
9 2 2

9 9 13 0
4 2 2

g g g g g g g gg g

gg gg g g g

+ + + + + − + +

+ + + − =
   (20) 

https://doi.org/10.12677/pm.2026.162043


张子祎，银山 
 

 

DOI: 10.12677/pm.2026.162043 149 理论数学 
 

此时有 ( ) ( )8 e , 0
3

g ζζ ζ−= > 代入原方程即可验证。 

情况 2：
1 , 0, 1

729
γ ν ξ= − = = 此时有 ( ) ( )8 e , 0

3
g ζζ ζ= < 。 

通过对六阶广义 Boussinesq 方程(1)进行 Lie 对称性分析，成功确定了其三个基本的无穷小生成元，

从而揭示了该方程内在的对称结构。特别地，我们选取其中具有重要研究意义的一个生成元，对原方程

进行了有效的约化与化简，显著降低了方程的复杂度。这一约化过程不仅为后续寻找精确解、分析解的

性质提供了新的可行路径，也为深入探讨此类高阶非线性波动方程的动力学行为奠定了理论基础。 

5. 六阶广义 Boussinesq 方程(1)的守恒律 

新守恒定理及其基本定义系统陈述如下： 
定义 4 考虑偏微分方程组(1)对应的 Lagrange 函数 

 L v Uα α=   (21) 

其中{ }vα 是势函数组。然后有算子： 

 ( )
1

11
1 , 1,

s
s

s
i ia a

s i i

D D a m
uu u

∞

=

∂ ∂ ∂
= + − =

∂∂ ∂ ∑


    (22) 

对 Lagrange 函数(21)进行变分运算，导出系统(2)的共轭方程组： 

 ( ) ( )( )* , , , , , 0s s a

LU x u u
uα
δν ν
δ

= =   (23) 

定理 1 根据 Ibragimov 新守恒定理，偏微分方程组(1)的任意 Lie 点对称均可生成系统(2)及其共轭系

统(23)的一组守恒律，相应的守恒向量可由显式公式构造 

 ( )1

1

s
l s

i i
i i

i i i

L LT L w D D w
u u

α α
α α

δ δξ
δ δ

= + +∑



  (24) 

其中： 1, ,i n= 
， 1, , mα = 

， j
jw uα α αη ξ= − 为特征形式。 

定理 2 假如(22)中的 Ti 满足 ( ) 0i iD T = ，那么 PDEs 系统(2)和(23)的一组守恒向量为如下形式： 
( )1 2  , , , nT T T T=   
基于 Ibragimov 新守恒定理，本文对 Boussinesq 方程(1)的守恒律开展系统性研究。 
首先，由表达式(23)可导出六阶广义 Boussinesq 方程(1)对应的 Lagrange 函数如下： 

 ( )p
tt xx xxxx xxxxxxxx

u u u uL v uν γ− − + = +    (25) 

继而应用 Ibragimov 新守恒定理，系统性地构造六阶广义 Boussinesq 方程的守恒律： 
为获得物理直观的守恒律，需判断原方程(1)是否为自伴随或准自伴随。经计算发现，原方程(1)不是

自伴随的，但具有准自伴随性。当取 v u= 时，虽不完全满足伴随方程，但可得到一组有物理意义的守恒

量，这些守恒量在原方程的解上成立。 
情况 1 当方程(1)中的 2p ≠ 时： 

1) 当 1X
x
∂

=
∂

时有 1, 0, 0x t uξ ξ η= = =  

得到： 

 u u x t
x xtu uuω η ξ ξ= = −− −   (26) 
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再使用公式(24)得到方程(1)的如下守恒律向量： 

 
( ) ( )

1

2 2 2 2 2
1

,

2 2 2

t
t x tx

x
t x x xx x xxx xxx xx xxxx

T u u uu

T u u uu u u u u u uν γ

= − −

= − − − − − + −
 (27) 

物理意义：能量守恒。 

2) 当 2X
t
∂

=
∂

时有 0, 1, 0x t uξ ξ η= = =   

得到： 

 u u x t
x t tu u uω η ξ ξ= − − = −   (28) 

再使用公式(24)得到方程(1)的如下守恒律向量：  

 
( ) ( )

2 2 2
2

2

,

2

t
t tt xx xxx

x
t x t xxx tx xx t xxxxx tx xxxx txx xxx

T u uu u u

T uu u u u u u u u u u u u

ν γ

ν γ

= − − + −

= + − + − +
  (29) 

物理意义：动量守恒。 
情况 2 当方程(1)中的 2p = 时： 

1) 当 1X
x
∂

=
∂

时有 1, 0, 0x t uξ ξ η= = =  

得到： 

 u u x t
x xtu uuω η ξ ξ= = −− −   (30) 

再使用公式(24)得到方程(1)的如下守恒律向量： 

 
( ) ( )

1

2 2 2 2 2
1 2

,

2 2 .

t
t x tx

x
t x x xx x xxx xxx xx xxxx

T u u uu

T u u uu u u u u u uδ γ

= − −

= − − − − − + −
 (31) 

物理意义：能量守恒。 

2) 当 2X
t
∂

=
∂

时有 0, 1, 0x t uξ ξ η= = =   

得到： 

 u u x t
x t tu u uω η ξ ξ= − − = −   (32) 

使用公式(24)得到方程(1)的如下守恒律向量： 

 
( ) ( )

2 2 2
2

2

,

2 .

t
t tt xx xxx

x
t x t xxx tx xx t xxxxx tx xxxx txx xxx

T u uu u u

T uu u u u u u u u u u u u

δ γ

ν γ

= − + −

= + − + − +
   (33) 

物理意义：动量守恒。  

3) 当 3
2 4

3 3 3
xX t u

x t u
∂ ∂ ∂ = + + + ∂ ∂ ∂ 

时有
2 4, ,

3 3 3
x t ux utξ ξ η= = = +   

得到： 

 
2 4

3 3
u u x

x
t

x ttu u u x u tuω η ξ ξ= − − =
+

− −    (34) 

使用公式(24)得到方程(1)的如下守恒律向量： 
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( ) ( )

( ) ( ) ( ) ( )

( )

2
3

2

2
3

2

1 1 22 4 3 3
3 3 3 3

2 ,
3 3

1 2 1 22 4 3 2 4 3 3 1
3 3 3 3

2
3 3

t
t x t tx tt xx xx xxx xx xxt

xxx xxx xxxx xxx xxxt

x
x x t x t x t x t x

t xxx tx xx xx t x

xT u u xu tu u xu tu u u u tu u

xu u u tu u

T u u xu tu u u xu tu u u x tu uu tu

xu u u u u u u

ν

γ

ν

 = + − − − + + − − 
 

 − − − 
 

= − + − − − + − − + − + −

+ − − +( ) ( )

( ) ( )

( )

22
3 3

.

xxx tx xxx xx xxt t xxxxx tx xxxx

t xxxxx tx xxxx txx xxx xxx t xxxxxx tx xxxxx txx xxxx

xxx xxxxt t xxxxxxx tx xxxxxx txx xxxxx

u u t u u u u u u

xu u u u u u u u u u u u u

t u u u u u u u u

γ

− − + −

+ − + − + − +
−

 
 

+ +



− 

  (35) 

物理意义：标度变换守恒律(与系统的伸缩对称性相关)。 
与四阶 Boussinesq 方程的对比：当 0γ = 时，方程(1)退化为经典四阶 Boussinesq 方程： 

( )2
tt xx xxxxxx

u u u u= + +  

对比分析表明： 
1. 对称性：四阶方程拥有更丰富的对称群；六阶项 0xxxxxxuγ = 的引入保持时空平移不变性。 
2. 守恒律：四阶方程存在质量、动量、能量三个基本守恒律；六阶方程额外引入了高阶色散相关的

守恒量，但质量守恒律可能被破坏。 
3. 解的结构：四阶方程支持光滑孤立波解；六阶方程在 0γ ≠ 时产生振荡尾波，形成“孤子辐射”现

象，这与高阶色散引起的频散效应直接相关。 
本文对六阶广义 Boussinesq 方程进行了系统性研究，重点探讨了其守恒律性质与 Lie 对称分析。通

过系统构造并深入分析多个具有物理意义的守恒量，揭示了方程内在的对称性和稳定性特征。这一研究

不仅进一步完善了该高阶非线性波动方程的理论体系，也为构造精确解、研究解的长期行为提供了新的

思路与方法，在数学物理领域具有重要的理论价值和研究意义。 
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