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Abstract
This paper investigates the symmetry analysis and conservation laws for a generalized sixth-order
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Boussinesq equation with high-order spatial dispersion. Firstly, using the Lie symmetry analysis
method, the Lie symmetry classification theorem for the sixth-order Boussinesq equation is pre-
sented. Secondly, symmetry reductions are performed based on the obtained Lie symmetries. Fi-
nally, by applying the new conservation theorem, conservation laws for the sixth-order Boussinesq
equation are constructed. Thereby, this work lays a foundation for further research on exact or ap-
proximate solutions of the sixth-order Boussinesq equation.
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1. 51§

PEBERML AU S, A PR TARS DLRE B 5E 2 AU I K E R 1A
ek, HoAir 2] DhE s SRR MR 2 7 FE(PDEs) AT U iR . RS 52 R, IRABFR &R
dEZk i PDEs MIVEIR S, X TR AR H YIS s yLH A H A .

LKW AR R, FEINCRRIRZ M I PDEs XKf# )%, HAN: Hirota XZ LT ¥A[1]-
[3], Darboux Z8Hti%[4] [5], Bécklund ZF#iE[6], Lie XIHRITIE[7]-[10]. M, Lie SR I7IE = HRE
B2 2K Sophus Lie B X FEH WS PDEs MEE TR —. %55 Z NH TG, TiEL
LA R SRR RIS, BN RIS AR L% PDEs & 1 F Bz —. IbAk, PDEs FIX#RIEL s7{E
B AFAERHIRR, SFHEMEESTT RO 2. it LA BE T E ST R A =
TEM. HET, MGpIamm B2 AR Noether sEFE[11][12], FeTiA[13], & SHRE14], FipE
FEH[15]-[17]555%

Horp 2 44523 Tbragimov [ 18] [1917E MU 73 75 F2 5 AR L UM 1 TGP DTk o fhad i 5]\ PDEs
#4i Lagrangian PREUBIRT SN, & S6HH Buler 517X RGREATL T 704, S T 58 % 1) PDEs R4
B RiEN. BJE, e Noether & B BIGHESL LA b TR RE, $2H 7 —Mn e @G k. 1X
—INEAMUE A T I PDEs %5, iERe AR AP ILHE PDEs 24, ML 7 2 & PP Ef A R 1%
B BRAE ZE AR S 44 Tbragimov 387 <7 1H & .

Lie XIARHIN TR Z AR, A0k 7352 ¥ Navier-Stokes J7F£[20] [21], AR£eIEI BN G
Korteweg-de Vries (KAV) 7 #£[22] [23|PA R A=W BN - 38T FE[24] [25].

Boussinesq J7 FE & ik /;Mllijlijj F—2RE BHPA T, E L EY)EE S K Joseph Valentin Boussinesq
[26] [27] T F/uH 23 H, @it ik Navier-Stokes /72, EOR B AEZRME RN AN BUB N R [FII, BRAR T 1
HSIE . Lie XIFRTE Boussinesq K AFEHMHWIRE , WKL A [1] Peregrine /5 F2F1 Nwogu /7 F2
[28]-[31], -4 Boussinesq /7 FEM14E R % Boussinesq /7 F£[32] [33], VAN AELMEYE 5+ ) Boussinesq /5 T
[34]%

Christou & Christov (2000)%5 A [35|7ERF 7T —4E AR 1% S s R AL, NS EOT Rl 2 RE R
T, RGuHHES T m I S R AL 7SEY T X Boussinesq 7 FE
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JNBYTT X Boussinesq 7 2R Lie XK M Z 7 FRA Rt — Pt i R 0 H B, FrbAAS 32 H 120
FIZTT R Lie MR 7 A Al pfE A

ASCHET Lie MFRHT[36]-[38], WFFL T i b 25 A1 €5 7S ) 3 Boussinesq /7 F2. HAR P& %4
Wr: 51 A4 Lie XRREIS T AR 55 2 ORI Lie XK 5 3 |BATTR)MLMN: 28
4 T T FRA ) SFEE.
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AT Rt T — M R s 43 7

U lul=U" (x,u,u(l),u(z),--‘,u(s))=0,O'=1,2,"',7’ (@)
EARMEERRE: x=(x,0,x,)  BEERY=(u' 0, um), M
a a autl a a a azud
uf =D, (u ):6_)c,.’u’7 =D, (") =D, D, (u ):6x,.6xj’ )
D,:i+uf +u;i+u;ki+'-~,i=l,'-~,n.
ox, ou’ ou ousy

FE X1 WER—ANBZHU Lie MFRAZ A
x =F(xu¢) :x+£§(x,u)+0(52)
. 4)
u =G(x,u,¢) =u+£77(x,u)+0(52)
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x,u G BREL. XIS N eI R

n a m o a
X =208 (o) ——+ 27" (xu)— ®)
i=1 ax,' a=1 au
FHRLERITC 75 /N IT(5) I k B SE 40 9t T I 3K
0 0 0
X(k) =X+ '(1)“ — 4+ (2_)‘7‘ + (3_)"‘ NI (k.)a —,k >1 6
; au’a 771,-]2 6”17/2 lijal3 8“17/5 771,-]2,».4,11( 6u;jj2,m,lk ( )
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n* =Dn" ~(D,& us,
(2)a _ (N i\, «a
M, = Dizni _(Diz ¢’ )u'l/' >
(3)er _ (2)x i\, a
Miiyiy, = Di3 M, _(Di3 ¢’ )uilizj > 7

(k) _ (k-1)a . i a
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dr__d (15)
t 4
+—u
3

w8
[SSHN )
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lntz%ln(2+4u)+lnc (16)

WE N, w1
u=%[x4g(§)—2] 17
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