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Abstract

This paper mainly investigates the automorphisms and classification of transposed Poisson super-
algebras over Heisenberg superalgebras. Firstly, we introduce the definitions of Heisenberg super-
algebras and transposed Poisson superalgebras. Then, for transposed Poisson superalgebras of ar-
bitrary dimensions, we calculate the properties of algebraic operations of transposed Poisson sup-
eralgebras over Heisenberg superalgebras. Finally, we study the classification of such transposed
Poisson superalgebras, obtain the isomorphism conditions between two transposed Poisson
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superalgebras over Heisenberg superalgebras, and further derive a complete classification of
transposed Poisson superalgebras over Heisenberg superalgebras of arbitrary dimensions by vir-
tue of antisymmetric bilinear functions on transposed Poisson superalgebras.
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