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Abstract

This paper employs the fixed point index theory in cones to investigate the existence and unique-
ness of positive radial solutions for the Dirichlet problem of the following quasilinear differential
system:

M, (u)+f1(v)=(D,xelS’1
(H)iM, (v)+ f,(u)=0,xeB,.
0

”|613l = v|asl =

Vu

Here, M, (u)=div —|(k=1), f e C([O,oo),[(),oo)),i =1,2,and B, denotes the unit ball

(1-1val)?

in RY (N > 2) .When k=1, M, (u) corresponds to the classical mean curvature operator.
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(2) XHrf x,ye K M0<r<1, ﬁa(bﬁ(l—t)y)Zta(x)+(1—t)a(y) .
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W, ABDE=AREE X, x,x, €K, L

xl<a, a(x)>b, a<|x|Ha(x)<b.

513 2.6 (1] % P /&35 Banach 5[] E hi—/MfE, 4:P — PRAELN, o 4P LR FES:
MMz, HXMERxeP, Ha(x)<|x|. BEFELEO<a<b<c, MIFUUTHKMRIL:
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5|3 2.7[13] 4 E & Banach Z[ill, K c E /& E FfI— . V r >0, ALK, :{xeK:||x||<r} .
WRT: K, — K ZAaHES:M, i3V xedk, ={xeK:||x||=r} » Ix#xo

(1) # ||| > ||x].x € 0K, , Wi(T,K,,K)=0:

) # ||| <], x e oK, , Wi(T.K,,K)=1,
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MR FIRUER, 513 2.6 HH I SRAR(S) R0 L .
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BAT A F ZIEMIERE | C[0,1] o, X HEA uy > 0, T T, 0 P> P R u, -

B, NTHTT, , BATEX G 2.8 F R BATRIL.
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Hik, 2ce(0,1)HTr=¢ (J 7, (u )dr)
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