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摘  要 

本文运用锥上不动点指数理论探讨含一类推广的平均曲率算子的拟线性微分系统Dirichlet问题 
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径向正解的存在性和唯一性，其中 
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， 

[ ) [ )( )if C i0, , 0, , 1, 2∈ ∞ ∞ = ， 1 为 ( )N N 2 ≥ 空间中的单位球。当 k 1= 时， ( )M u1 即为经典的平均曲

率算子。 
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Abstract 
This paper employs the fixed point index theory in cones to investigate the existence and unique-
ness of positive radial solutions for the Dirichlet problem of the following quasilinear differential 
system: 
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Here, ( )
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, [ ) [ )( )if C i0, , 0, , 1, 2∈ ∞ ∞ = , and 1  denotes the unit ball 

in ( )N N 2 ≥ . When k 1= , ( )M u1  corresponds to the classical mean curvature operator. 
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1. 引言 

近几年来，在 Minkowski 空间中，对于含平均曲率算子 

( )
21

uM u div
u

 ∇ =   − ∇ 

 

的 Dirichlet 问题，无论是在一般有界区域，还是在球体中，其解的存在性、唯一性和多重性已被广泛关

注([1]-[9])。这些问题源于微分几何和相对论，从几何领域来看，其与极大或常平均曲率类空超曲面(闵可 

夫斯基空间 ( ){ }1 , : ,N Nx t x t+ = ∈ ∈   中余数为一的类空子流形，其洛伦兹度量为 ( ) ( )2 2

1

N

j
j

dx dt
=

−∑ )相关。 

2013 年，Cristian Bereanu，Petru Jebelean 和 Pedro J. Torres [10]根据上下解方法以及 Leray-Schauder
度理论探讨 Minkowski 空间中带有平均曲率算子的 Dirichlet 问题 
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正径向解的多重性。其中 0λ > 是一个参数， 1, 0q R> > ， [ ): 0,µ ∞ → 是连续函数，在 ( )0,∞ 上严格

为正，且 ( ) { }:NR x x R= ∈ < 。 
2019 年，Daniela Gurban 和 Petru Jebelean [11]运用不动点指数以及上下解方法研究在 N 中的球上涉

及 Minkowski 空间中平均曲率算子的 Dirichlet 问题 
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非变分径向系统正解的存在性和多重性。其中 M 表示 Minkowski 空间中的平均曲率算子，定义为 

( )
21

wM w div
w
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， 

( ) { }:NR x x R= ∈ < ， 2N ≥ 是整数，且函数 [ ] [ ) [ )2
1 2, : 0, 0, 0,g g R × ∞ → ∞ 是连续的。同时，二人进一

步研究了双参数 Lane-Emden 系统 
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径向正解的存在性和多重性。其中 1 2,p q 是非负的，而 1 2,q p 是正指数。 
2021 年，Zhiqian He 和 Liangying Miao [12]通过运用 Leggett-Williams 不动点定理研究 Minkowski 空

间中含平均曲率算子的拟线性微分系统的 Dirichlet 问题 
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正的径向解的存在性与多重性。其中 M 表示 Minkowski 空间中的平均曲率算子： 

( )
21
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， 

{ }: 1Nx x= ∈ < ， 2N ≥ 是整数，且函数 [ ]1 2, : 0,1f f + + +× × →   是连续的，这里 [ ): 0,+ = ∞ 。 
借鉴上述研究的探讨内容，本文接下来讨论含一类推广的平均曲率算子的拟线性微分系统 Dirichlet

问题 
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径向正解的存在性和唯一性，其中 
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， 

[ ) [ )( )0, , 0, , 1, 2if C i∈ ∞ ∞ = ， 1 为 ( )2N N ≥ 空间中的单位球。 
本文总假设： ( )1H [ ) [ ): 0, 0,if ∞ → ∞ 是连续函数且 ( )1,2if i = 不恒为零。 

2. 预备知识 

在分析问题(5)的径向正解时，我们首先设 r x= ，从而 ( ) ( ) ( ) ( ),u x u r v x v r= = ，那么上述问题(5)
转变为如下混合型的边值问题 
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设问题(6)的解为 ( ) [ ] [ ]1 1, 0,1 0,1u v C C∈ × ，其中 ,u v 是非负函数，满足 1, 1u v′ ′< < ，且映射 

( )( )1N
kr r u rϕ− ′

 和 ( )( )1N
kr r v rϕ− ′

 在 [ ]0,1 上是 1C 类的，并满足问题(6)。在本文中，我们用 ⋅ 表示

[ ]: 0,1C C= 的上确界范数，而乘积空间C C× 赋予范数 ( ),u v u v= + 。 
定义 P 是C 中的锥，其中 [ ] ( ) [ ]{ }0,1 : 0, 0,1P u C u t t= ∈ ≥ ∈ 。定义 { }: , 0R u P u R R= ∈ < > 。对任

意的 ,u v P∈ ，定义如下两个解算子 ( ), : 1, 2i kT P P i→ = ： 
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由(7)，(8)可知 ( ) [ ] [ ]1 1
1 2, 0,1 0,1v v C C∈ × 是问题(6)的解当且仅当 1 1, 2 2 2, 1,k kv T v v T v= = ，其中 

( ) { } { }1 2, \ \v v P Pθ θ∈ × 。 
引理 2.1 对任意的正常数 ( ), 0,1t s∈ ，使得 1ts < ，我们有 

 ( ) ( )k kt s tsϕ ϕ>  (9) 

特别地，有 

 ( )( )1
k kt s tsϕ ϕ− >  (10) 

成立。 
引理 2.2 若 ( ),u v 是问题(5)的径向解，则存在常数 ( )0,1δ ∈ ，使得 

 { }max , 1u v δ
∞ ∞
′ ′ ≤ − 。 (11) 

证明：假设存在解 ( )1 1,u v 满足 
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由于 ( )1 0 0u′ = 且 ( )1 1 0u = ，所以存在 ( )0 0,1r ∈ ，有 ( ) ( )1 0 1 1 0, 0u r u u r
∞
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。当 ε 趋近于零时， ( )( )1 1 0f v r 趋近于负无穷，与本文总假

设 ( )1H 矛盾。因此存在 0δ > ，使得 1 1u δ
∞

′ ≤ − 。 

同理可证 1 1v δ
∞

′ ≤ − 。 
引理 2.3 非线性算子 ( ), 1:i kT P P→ 是全连续算子。 
证明：先证 ( ), 1i kT P P⊂ 。因为 
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又因为 ( )( ) ( )( )1, 2,1 0, 1 0k kT v T u= = ，所以 , 1,i kT P u P∈ ∈  。 
接下来，证明全连续性。显然， 2,kT 是连续的。需证{ }2, 1:kT u u P∈  一致有界。设 1u P∈  ，有

( ) [ ] [ ]0,1 , 0,1u s s∈ ∀ ∈ 。因为 [ ]0,1 是紧集， 2f 是连续函数，因此在 [ ]0,1 上满足：(i) 有界性：存在
2

0fM > ，

使得 ( )( ) [ ]
22 , 0,1ff u s M s≤ ∀ ∈ 。(ii) 极值定理： 2f 在 [ ]0,1 上有最大值、最小值。即： 
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M
f u M
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故 2,kT u Mϕ∞
≤ ，即 ( )2, 1kT P 一致有界。 

最后只需证 ( )2, 1kT P 是等度连续的。由引理 1.2，有 

( ) ( )( )1 1
21 0

1 d 1
r N

k Nv r s f u s s
r

ϕ δ− −
−

 ′ = − ≤ − 
 ∫ 。 

因此，存在 0L > ，使得 ( ) ( ) [ ]2, 1, , 0,1kT u r L u P r′ ≤ ∀ ∈ ∈ 。由中值定理， [ ]1 2, 0,1r r∀ ∈ ，存在 

( )1 2,r rξ ∈ ，使得 

 ( )( ) ( )( ) ( ) ( )2, 1 2, 2 2, 1 1k k kT u r T u r T u r r L r rξ′− = − ≤ −  (16) 

0ε∀ > ，取
L
εδ = ，对 1u P∀ ∈  ， [ ]1 2, 0,1r r∀ ∈ ，只要 1r r δ− < ，总有 

 ( )( ) ( )( )2, 1 2, 2 1k kT u r T u r L r r Lδ ε− ≤ − < = 。 (17) 

因此， ( )2, 1kT P 是等度连续的。 
综上，由 Arzelà-Ascoli 定理， ( )2, 1kT P 在 [ ]0,1C 中是相对紧的，即 2,kT 是紧算子。因此， 
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( )2, 1:kT P P→ 是全连续算子。同理可证 ( )1, 1:kT P P→ 是全连续算子。故 1, 2,k k kT T T=  也是全连

续算子。 
引理 2.4 [12] 假设 ( )1H 成立，则 ( )kT P P⊂ ，且 :kT P P→ 是紧的、连续的。现在我们介绍著名的

Leggett-williams 不动点定理。设 K 是实 Banach 空间 X 中的一个锥。若映射α 满足以下条件，则它是锥

K 上的一个非负连续凹泛函： 
(1) [ ): 0,Kα → ∞ 是连续的； 
(2) 对所有 ,x y K∈ 和 0 1t≤ ≤ ，有 ( )( ) ( ) ( ) ( )1 1tx t y t x t yα α α+ − ≥ + − 。 
令 { } ( ) ( ){ }: : , , , : : ,cK x K x c K b d x K b x x dα α= ∈ < = ∈ ≤ ≤ 。 
引理 2.5 [12] 令 K 是实 Banach 空间 X 中的一个锥， : c cA K K→ 是全连续的，而且α 是锥 K 上的非

负连续的凹泛函，满足对所有 cx K∈ ，有 ( )x xα ≤ 。假设存在 0 a b d c< < < ≤ ，使得以下条件成立： 
(1) ( ) ( ){ }, , :x K b d x bα α∈ > ≠ ∅，且对所有 ( ), ,x K b dα∈ ，有 ( )Ax bα > ； 
(2) ax K∈ ，有 Ax a< ； 
(3) 对 ( ), ,x K b cα∈ 且 Ax d> ，有 ( )Ax bα > 。 
那么， A 至少有三个不动点 1 2 3, , cx x x K∈ ，满足 

( )1 2 3,  ,  x a x b a xα< > < 且 ( )3x bα < 。 

引理 2.6 [1] 令 P 是实 Banach 空间 E 中的一个锥， : c cA P P→ 是全连续的，α 是锥 P 上的非负连续

的凹泛函，且对任意 cx P∈ ，有 ( )x xα ≤ 。假设存在 0 a b c< < < ，使得以下条件成立： 
(4) ( ) ( ){ }, , :x P b c x bα α∈ > ≠ ∅ ，且对所有 ( ), ,x P b cα∈ ，有 ( )Ax bα > ； 
(5) 对任意 ax P∈ ，有 Ax a< 。 
则 A 在 cP 中至少有三个不动点 1 2 3, ,x x x ，满足 

( )1 2 3,  ,  x a b x x aα< < > 且 ( )3x bα < 。 

引理 2.7 [13] 令 E 是 Banach 空间，K E⊂ 是 E 中的一个锥。∀ 0r > ，我们设 { }:rK x K x r= ∈ < 。

如果 : rT K K→ 是全连续的，使得∀ { }:rx K x K x r∈∂ = ∈ = ，Tx x≠ 。 
(1) 若 , rTx x x K≥ ∈∂ ，则 ( ), , 0ri T K K = ； 
(2) 若 , rTx x x K≤ ∈∂ ，则 ( ), , 1ri T K K = 。 
引理 2.8 [13] 令 K 为实 Banach 空间Y 中的一个锥。设 :A K K→ 而且 0u θ> ，其中θ 是Y 中的零元

素。 
(1) ∀ x θ> ， ∃ 1 2, 0θ θ > ，我们有 ( )1 0 2 0u A x uθ θ≤ ≤ ； 
(2) ∀ 0 0u x uα β≤ ≤ 而且 ( )0,1t∈ ， ∃ 0η > ，我们有 ( ) ( )1A tx tAxη≥ + 。 
那么 A 称为 0u -次线性算子。 
引理 2.9 [13] 一个单调递增的 0u -次线性算子T 至多有一个正的不动点。 

3. 主要结果 

定义一个非负连续凹泛函 [ ): 0,P Pα × → +∞ ，其中 ( ): ,u v P P= ∈ ×u ， 

( )( )
[ ]

( ) ( )( )
0,

min
r

u r vr r
σ

α
∈

= +u  

其中 ( )0,1σ ∈ 。 
定义 ( ) ( ) ( ) ( ){ }, , , : , , ,P b c u v P P u v b u v cα α= ∈ × ≥ ≤ 。 
定理 3.1 假设存在四个正常数 , , ,a b c σ ，满足 0 1a b c< < < < 且 1 1b σ< − < ，使得： 
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( )2H 对任意 ( ) [ ] [ ], 0,1 0,r s a∈ × ，有 ( )
2k
af s Nϕ  ≤  

 
； 

( )3H 对任意 ( ) [ ] [ ], 0,1 0,r s c∈ × ，有 ( )
2k
cf s Nϕ  ≤  

 
； 

( )4H 对任意 ( ) [ ] [ ], 0, ,r s b cσ∈ × ，有 ( ) ( )2 1kN

N bf s ϕ
σσ

 
≥   − 

。 

则问题(5)至少有三个正径向解 ( ) ( ) ( )1 1 1 2 2 2 3 3 3, , , , ,u v u v u v= = =u u u ，满足： 

( )1 2 3,  ,  a b aα< > >u u u 和 ( )3 bα <u 。 

证明：我们的目的是证明在满足上述假设下引理 2.6 成立。我们分三步来讨论：定义 

[ ] [ ]: 0,1 0,1kT P P C C× → × 为一个具有分量 ( )1, 2,,k kT T 的映射。 
首先，我们要证明 ( )k c c c cT P P P P× ⊂ × 。对任意 c cP P∈ ×u ，对任意 [ ]0,1r∈ ，有 ( )u r c≤ ≤u ，因此

由条件 ( )3H ，可得 

 

( )( )1 1 1
2, 210 0

1 1 1
10 0

1 1
0

1 d d

1 d d
2

d
2

2

s N
k k N

s N
k kN

k k

T u f u s
s

cN s
s

c s

c

ϕ τ τ τ

ϕ τ ϕ τ

ϕ ϕ

− −
−

− −
−

−

 =  
 
  ≤   

  
  ≤   

  

=

∫ ∫

∫ ∫

∫
 (18) 

同理可证 1, 2k
cT v ≤ 。由上述式子，我们就有 1, 2, 2 2k k k

c cT T v T u c= + < + =u 。 

因此 ( )k c c c cT P P P P× ⊂ × 。 
接下来，我们同理可证对任意 a aP P∈ ×u ，有 kT a<u 。 
根据上述证明，引理 2.6 中的条件(5)得到满足。 

最后，我们证明引理 2.6 中的条件(4)。令 ( ): , , ,
4 4

b c b c P b cα+ + = ∈ 
 

u ，我们可以推出 

( ) ( ){ }, , : ,P b c b cα α∈ > <u u u  

是非空的。对任意 ( ), ,P b cα∈u ，有 ( ) ( )b r cα≤ ≤ ≤≤u u u 成立。如果任取 [ ]0,r σ∈ ，由条件 ( )4H ，

我们有 

 

( ) ( )( )

( )

( )

1 1 1
2, 21 0

1 1 1
1 0

1 1

1 d d

1 d d
2 1

d
2 1

.
2

s N
k k N

N
k kN N

k k

T u f u s
s

N b s
s

b s

b

σ

σ

σ

σ

α ϕ τ τ τ

ϕ τ ϕ τ
σσ

ϕ ϕ
σ

− −
−

− −
−

−

 =  
 
  

≥     −  
  

≥     −  

=

∫ ∫

∫ ∫

∫

 (19) 
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我们同理可证 ( )1, 2k
bT vα ≥ 。因此， ( )

[ ]
( )( ) ( )( )1, 2,,1

mink k ks
T T v s T u s b

σ
α

∈
 = + ≥ u 。综上，定理 3.1 成立。 

例 1 对于给定的四个正常数 , , ,a b c σ ，满足 0 1a b c< < < < ， 1 1b σ< − < ，且 ( )
( )2 21

k k

yy
y

ϕ =
−

，其

中 ( )0,1y∈ 。讨论如下边值问题 

( )( )( ) ( )

( )( )( ) ( )
( ) ( ) ( ) ( )

1 1
1 1

1 1
2 1

0, 

0, 

1 1 0, 0 0 0

N N
k

N N
k

r u r r f v x

r v r r f u x

u v u v

ϕ

ϕ

− −

− −

 ′′ + = ∈


′ ′ + = ∈
 ′ ′= = = =



  

正径向解的多重性，其中 ( )

( )

[ )

[ )
1

0, 0,

, ,

, ,1

v a
v af v v a b
b a

v b

α

α

∈
 −= ∈

−
∈

， ( )

( )

[ )

[ )
2

0, 0,

, ,

, ,1

u a
u af u u a b
b a

u b

α

α

∈
 −= ∈

−
∈

。 

解：由于 ( )
1

lim k
y

yϕ
−→

= +∞，所以存在正常数σ ，有
( )

1
2 2 1k kN

c bϕ ϕ
σσ

   =     −   
。我们令

2k
cNα ϕ  =  

 
。

显然，由 ( ) ( )1 2,f v f u 的定义可知， ( ) ( )1 2,f v f uα α≤ ≤ ，其中 ( ), 0,1u v∈ 。可见，( )1H ，( )2H ，( )3H ，

( )4H 成立。因此，根据定理 3.1，具有上述非线性项 1 2,f f 的边值问题至少有三个正径向解。 

定理 3.2 假设 ( )1H 满足而且函数 ( )1,2if i = 单调递增，∀ ( )0, 0,1u t> ∈ ，∃ 0η > 有 ( )0 1 1tη< + < 成

立，其中 0 1t< < ，使得 ( ) ( ) ( )1 , 1,2i if tu tf u iη≥ + = ，那么问题(5)存在唯一的径向正解。 
证明：由上述算子 1, 2,,k kT T 的定义，我们可以得到 1,kT 和 2,kT 是单调递增算子。接下来设 1, 2,k k kT T T=  ，

我们要证问题(5)径向正解的唯一性，关键在于说明在 P 中算子 kT 的不动点数量不超过一个。根据引理 2.9，
我们下面只需要证明在空间 [ ]0,1C 中，对某个 0 0,u > 算子 :kT P P→ 具备 0u -次线性的性质。 

第一步，对于算子 2,kT ，我们将对其满足引理 2.8 中的条件(1)进行验证。 
若令 ( )

[ ]
( )( )20,1

maxk t
N l f u tϕ

∈
= 。事实上，有 

 

( )( ) ( )( )

( )

( )( )
( )

1 1 1
2, 21 0

1 1 1
1 0

1 1

1 d d

1 d d

d

1 .

s N
k k Nr

s N
k kNr

k kr

T u r f u s
s

N l s
s

l s

l r

ϕ τ τ τ

ϕ τ ϕ τ

ϕ ϕ

− −
−

− −
−

−

 =  
 
 ≤  
 

≤

= −

∫ ∫

∫ ∫

∫

 (20) 

定义 [ ]0 1 , 0,1u r r= − ∈ 且 2 lθ = ，则 

 ( )( )2, 2 0kT u r uθ≤ 。 (21) 

其次，令 ( )0,1c∈ 且 ( )( )( )1 1
20

d
c N

k f uϕ τ τ τ− −Γ = ∫ 。 

一方面，当 [ ]0,r c∈ 时，我们由 ( )( )2,kT u r 的定义可知其关于变量 r 是递减的，故 

( )( ) ( )( ) ( )2, 2, 1k kT u r T u c c≥ ≥ Γ − 。 

另一方面，当 ( ],1r c∈ 时，令
[ ]

( )( )2,1
min
t c

m f u t
∈

= ，则 
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( )( ) ( )( )

( )
( )

1 1 1
2, 21 0

1 1 1
0

1

1 d d

d d

1 .

s N
k k Nr

c N
kr

N

k

T u r f u s
s

m s

mc r
N

ϕ τ τ τ

ϕ τ τ

ϕ

− −
−

− −

−

 =  
 

≥

 
= − 

 

∫ ∫

∫ ∫  (22) 

设 1min ,
N

k
mc

N
ϕ−   ′Γ = Γ  

   
，易知，令 ( )1 1 cθ ′ ′= Γ − ≤ Γ ，我们有 

 1 0 2, 2 0ku T u uθ θ≤ ≤ 。 (23) 

因此，引理 2.8 中条件(1)满足。同理可证 1,kT u 也满足引理 2.8 中条件(1)。故算子 kT 也满足引理 2.8 中

条件(1)。 
最后，我们只需证明 1 0 2 0u u uθ θ≤ ≤ ，且 ( )0,1ξ ∈ ，存在某些 0η > ，使得 ( ) ( )1k kT u T uξ η ξ≥ + 。 
我们由 1, 2,,k kT T 的定义可得 

 

( )( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

1 1 1
2, 21 0

1 1 1
21 0

1 1 1
21 0

2,

1 d d

1 1 d d

11 d d

1 .

s N
k k Nr

s N
k Nr

s N
k Nr

k

T u r f u s
s

f u s
s

f u s
s

T u r

ξ ϕ τ ξ τ τ

ϕ τ η ξ τ τ

η ξ ϕ τ τ τ

η ξ

− −
−

− −
−

− −
−

 =  
 
 ≥ + 
 

 > +  
 

= +

∫ ∫

∫ ∫

∫ ∫

 (24) 

同理可证 ( )( ) ( ) ( )( )1, 1,1k kT u r T u rξ η ξ≥ + 。那么由上述式子，我们有 

 

( )( ) ( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )

1, 2,

1, 2,

1

1

1 .

k k k

k k

k

T u r T T u r

T T u r

T u r

ξ η ξ

η ξ

η ξ

≥ +

≥ +

≥ +



  (25) 

故 kT 满足引理 2.8 中的条件(2)，因此算子 kT 是 0u -次线性的，从而根据引理 2.9，我们可以得到在 P
中算子 kT 至多存在一个不动点。由此可见，问题(5)至多存在一个径向正解。另一方面，在引理 3.1 中我

们已经证明了问题(5)径向正解的存在性，所以问题(5)存在唯一的径向正解。 
综上，定理 3.2 成立。 
例 2 讨论如下边值问题 

( )

( )

1 1

1
4

1

1
2

1

0, 

0, 

0

k

k

M u v x

M v u x

u v
∂ ∂


+ = ∈


 + = ∈
 = =  




 

正径向解的唯一性，其中 ( )
( )

( )
2 2

1
1

k k

uM u div k
u

 
 ∇ = ≥
 

− ∇ 
 

。 
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解：由题意可知
1 1
4 2,v u 是满足 ( )1H 的且单调递增。接下来要使定理 3.2 中的其余条件满足，我们只需

令
3 1 1
4 2 2min 1, 1 1t t tη

− − −  ≤ − − = − 
  

即可，其中 ( )0,1t∈ 。因此，该问题的非线性项 1 2,f f 使得定理 3.2 中的

所有条件成立，由定理 3.2 可得上述问题存在唯一的径向正解。 
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