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Abstract

This paper addresses the optimization decision-making problem for cooperative jamming by un-
manned aerial vehicle (UAV) clusters against multiple missile threats. We propose a multi-UAV smoke
screen jamming strategy optimization method based on Integer Programming (IP) and Differential
Evolution (DE). By establishing a multi-body kinematics model for the missile-UAV system and a
spatio-temporal obscuration analysis model, an optimization function aimed at maximizing the to-
tal effective obscuration duration is constructed. The proposed approach employs Integer Program-
ming to accomplish the task assignment between UAVs and missiles, and subsequently utilizes the
Differential Evolution algorithm to collaboratively optimize multiple parameters, including the UAVs’
heading angles, flight velocities, and the timing of jamming cartridge deployment. Simulation re-
sults demonstrate that after 10,000 iterative optimizations, the proposed method achieves a total ef-
fective obscuration duration of 21.11 seconds, which represents a 14.4% improvement compared to
the standard Particle Swarm Optimization (PSO) algorithm. This verifies the effectiveness and supe-
riority of the proposed method in multi-target cooperative jamming scenarios, providing a theoret-
ical foundation and decision-making support for cooperative defense of UAV clusters in complex
environments.
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Figure 1. Schematic diagram of the missile observation window geometry
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Figure 2. Optimal strategy for five UAVs cooperatively defending against three missiles

2. ARFTANBERE = SR &R

wE 2 PRSI RN, FY, FYWhETHE ML, FYs, FY,BRETH M2, FYs 214t M3,

DOI: 10.12677/5a.2026.151011 113

Giit 5 i


https://doi.org/10.12677/sa.2026.151011
https://doi.org/10.12677/sa.2026.151011

PRBL Y “HOIILRC . HE B (S o 2 A B8 S L TR (R R AL, TR T “IERERAL - FPRED)
A - REAML” (12 2R R
A S ROERERT AL (RAHC: 21, 117)

53w
SCUERTHA: 10-35%)
(S3#P6E: 5000-10000K) g zg: M2
-?gé [ N3 (10, 5]
- 0 BoEEtE (ocd)
TRy
kﬁ’9$ MZJ v
x
3
53 M3
‘ ‘ I ” 22. 66F
MEAE: 21 11 B EHUERLATIE
(EEARIEPSOIZFH14. 4%)
0 5 10 15 20 25 30 35 4

mHE) ()
Figure 3. Total obscuration timeline for all missiles

& 3. FTA SR SE R EZ%

it 10,000 JEACHEIL, HEMSSEILT BA RGERIT K 2111 BROGL R IERE, EHE DT
10~35 B3 IS Be(HLIE 3), % BOW L4« AT 206 2 H A% 5000~10,000 K AKIIXHE, I Sl R
SENT 2L H BRI BB 5 47

5.3. BEEMREXTEE

A VFEME T FRUER FRESLIRA 18.45 FAIARTHEZ 43 L S09R 0 20.23 72, JEMALAE 2 iR T T
14.4%H01 4.3%, IX 3 EYPETEEEOR RIS UL R AFRI UG i A0 22 70 i L s R e i R Ee 71, & Wi
1ERA R0 IR T A% G538 5 BN R 8 e AR R B e

6. Lit5RE

ARSCEE RS 2 T 3B 5N TE ABUERRE O [F T A DAL PR SR R L, DA AT RO N K B KA o H A
FEAL T UM A TR, SR AT B RO R 5 22 70 A SE AR 45 B 0 T3 VR SR B R SR A o 7 L4 SRR,
GITEREA RBARTHE R RE, B R A I REEB AN R R, HRAEL Mlsiae, ARBEZ LA
PLE R T IRIR AL 7 AT R TT 5o 5 SR TR 3 55 18 R A A B MR Ay B, 5 B e R A
RIS, IFRZ T ANERE R RIS, 302 AN R TP AR mseife . &R Ts A
J&.

BEE
[1] Wang, X,, Zhao, Z., Yi, L., Ning, Z., Guo, L., Yu, F.R., et al. (2024) A Survey on Security of UAV Swarm Networks:
Attacks and Countermeasures. ACM Computing Surveys, 57, 1-37. https://doi.org/10.1145/3703625

[2] Kong, L., Liu, Z., Pang, L. and Zhang, K. (2022) Research on UAV Swarm Operations. In: Long, S. and Dhillon, B.S.,
Eds., Lecture Notes in Electrical Engineering, Springer, 533-538.
https://doi.org/10.1007/978-981-19-4786-5 73

[3] 30, 450, &FE WETIMEARLGAR]. BB EEAR, 2007, 35(4): 22-26.
[4] B, sk, Z25RMS, 55 MFRWILG = B REUERERII]. &Rk, 2018, 26(10): 820-827

DOI: 10.12677/5a.2026.151011 114 gt 5N A


https://doi.org/10.12677/sa.2026.151011
https://doi.org/10.1145/3703625
https://doi.org/10.1007/978-981-19-4786-5_73

(5]
(6]

(7]
(8]
[°]
[10]

[11]
[12]

WA, PRE S, Fgie. BT @S 07 1] Je S50t HETR, 2007, 5(3): 82-84.

Mirza, 1.S., Shah, S., Siddiqgi, M.Z., Wauttisittikukij, L. and Sasithong, P. (2023) Task Assignment and Path Planning of
Multiple Unmanned Aerial Vehicles Using Integer Linear Programming. TENCON 2023-2023 IEEE Region 10 Confer-
ence (TENCON), Chiang Mai, 31 October 2023-3 November 2023, 547-551.
https://doi.org/10.1109/tencon58879.2023.10322503

Sha, X., Qian, F. and He, H. (2024) Research on Improved Differential Evolution Particle Swarm Hybrid Optimization
Method and Its Application in Camera Calibration. Mathematics, 12, Article 870. https://doi.org/10.3390/math12060870

Zeng, Y., Wu, L., Li, J., Zhuang, X. and Wu, C. (2025) Resilient Task Allocation for UAV Swarms: A Bilevel PSO-ILP
Optimization Approach. Drones, 9, Article 623. https://doi.org/10.3390/drones9090623

Bi, J., Huang, W., Li, B. and Cui, L. (2024) Research on the Application of Hybrid Particle Swarm Algorithm in Multi-
UAV Mission Planning with Capacity Constraints. 2024 IEEE International Conference on Unmanned Systems (ICUS),
Nanjing, 18-20 October 2024, 928-933. https://doi.org/10.1109/icus61736.2024.10840063

B, R, FE. BRI R ZE o3GRS ], RIIKF 2 (3 TRR), 2008, 25(2): 211-215.

PR SC. 220y RS I JLAE ML ) SR GEREAL SR D v B 2 P 7F 72 [D: [ 2008 50). Kb iR K%y, 2013,

DOI: 10.12677/sa.2026.151011 115 it 5N


https://doi.org/10.12677/sa.2026.151011
https://doi.org/10.12677/sa.2026.151011
https://doi.org/10.1109/tencon58879.2023.10322503
https://doi.org/10.3390/math12060870
https://doi.org/10.3390/drones9090623
https://doi.org/10.1109/icus61736.2024.10840063

	基于整数规划和差分进化的多无人机协同烟幕干扰策略优化方法研究
	摘  要
	关键词
	A Hybrid Integer Programming and Differential Evolution Framework for Multi-UAV Cooperative Smoke Screen Jamming Optimization
	Abstract
	Keywords
	1. 引言
	2. 模型假设与符号说明
	2.1. 模型假设
	2.2. 符号说明

	3. 多无人机协同干扰优化模型
	3.1. 建立运动学模型
	3.2. 观测窗口与有效遮蔽判定
	3.3. 协同优化模型：任务分配与有效遮蔽评估
	3.3.1. 基于整数规划的任务分配模型
	3.3.2. 总有效遮蔽时长的计算流程


	4. 差分进化算法设计
	4.1. 算法流程设计
	4.2. 基于差分进化的协同投放策略优化模型

	5. 仿真实验与结果分析
	5.1. 实验设置
	5.2. 优化结果分析
	5.3. 算法性能对比

	6. 结论与展望
	参考文献

