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Abstract

As the most important natural fiber crop worldwide, cotton plays a pivotal role in the agricultural
economy, carbon emission reduction, and international trade. Accurately characterizing the con-
sistency of multi-source remote sensing reflectance information for cotton is a prerequisite for re-
fined monitoring, resource management, and multi-source data fusion. In recent years, the rapid
development of multi-source medium- to high-resolution remote sensing has provided an effective
technical means for extracting cotton information at regional scales, yet a quantitative understand-
ing of the systematic impacts of differences in sensor spectral response functions (SRFs) on cotton
reflectance and vegetation index estimation is still lacking. Therefore, this study targets multiple
mainstream medium- to high-resolution optical sensors from China and abroad, and uses 2346 can-
opy hyperspectral measurements of cotton at different phenological stages, combined with the SRFs
of each sensor, to simulate multi-source multispectral reflectance and vegetation indices. From a
three-dimensional perspective of “band-index-phenological stage”, we analyze how intrinsic SRF
differences propagate into uncertainties in surface observations. The results show that the fuzzy
similarity in the blue, green, and near-infrared bands is generally higher than 0.95, and the mean
absolute relative bias of NDVI and SAVI is overall constrained within 0.2%~0.35%. In contrast, the
local similarity in the red band can drop to about 0.89, and the bias of EVI can reach approximately
3.8%, making them the most sensitive band and index responsible for inconsistencies in multi-source
cotton reflectance and vegetation indices. Sensors equipped with an SWIR1 band, such as L7_ETM+,
L8_OLI, and Sentinel-2A/B, exhibit extremely high consistency in LSWI. These findings indicate that
neglecting SRF-induced differences in cotton vegetation remote sensing studies may introduce sev-
eral percentage points or more of systematic error at specific phenological stages and for certain
sensitive indices. Consequently, SRF differences must be explicitly considered, and appropriate
data organization and error-correction strategies must be designed in multi-source data fusion and
cross-sensor comparisons to ensure the scientific reliability and comparability of research conclu-
sions.
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Table 1. Sources of spectral response functions for sensors
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Figure 1. Comparison of spectral response functions among different sensors
B 1. NEME R RS B R # Xt

3.2. EEBHIBEN

M S E X s bt 3 P A A 5 SR P o v 20 R R RO R, (BRI TR d T HE
AT (R B 1) DA R i S A e DR £ S BU R AR R R AR A B2 5 — DL BR R Pty ke 1Y
AN E P o DR IR AR Y S i e A AT B A e 22 DT AR AU LA D S i 08l FH R R A% IR
I P 2 PR K 10 22 55 0 M) I S A SR R T DA O B RO IR FE A R T M v D s e o i
SPHEERIN L nm (1478 BB R BN 110 E TR A RE R SR, R R AR I IEIE D 2 AT B B N B K
Pe B, PRIMTT DIAR I 2 % JE s P ' 1 o 7 o i 5 08 8 1 X 1) P v o o SRR A5 R AT B RIS SR A O
B R e O o B S 2R [ 16]

2o (p(A)r0(2)

= 1
TN o) @

DOI: 10.12677/sa.2026.151009 90 gt 5N A


https://doi.org/10.12677/sa.2026.151009

TR

o rp R TR TR B IR 3, p() AR RS AE B A AL B AR SR, o) WIEEERERK
A BEREE MR B EUE, @, b JYBHUL TR TS B B R A A B
3.3. THEMSHAEZE

NEMA RS ERES R OGRS R FOL A BIR B R E R, ASCER T e 258 M iz
PRI E 3 SRGETHERR AT LRGPP D HTd R, K S5 A RIS RAE L SLfEL, X B
JRAR IR S RAF ML, LA E B2 0 5 AEAN [ S B AR AT I 53R, tE R EL(R-Square, R?)
iR A S AR A AR B T 2/ Al il E AR R RO REEATARRE, HHUEYERDY 0 & 1. ZdEtrx
TR A LR AR, BEEdin 1, U] B AR AR R AR L R . AR OGIERR T
RTINS LUAR IS 1 2 06 S S R RER S B R I A O R AL T R A L 5. 24 REB&IE T LI, 5]
PR A M I SRR B, mXE 11 SB LML A g . B RE S I hE RET R N:

Y-y, )2

T, =1-=mn A
zin:l(yi_yi)
For T, o e ki 22 3 22 VAR 2 TR ) R 2 R KL Yi%%5%%@%&5@5&%%%%&@%i’ﬂ
fHo 73 TH Rmnt AR IR 5 2 B AR AR R 82 I R ME 2 [RI RSP T7 22 M, S BRI R 5%
& AR IR R 32 YOS ME S5 3 E 2 [ 1)~ 75 22 2 Fil
Y22 H T AT WIWE S HSHE 2 A 2 S, HME R ZH W EEZE. N TEEZ GRS, Xt
s 22 S 22 A S 3 15 0 LU AR IR S AEAH R BT 22 0 s ML AUMEL P 22 4B /0N o LR i 222 ) A 26 56 i 22 114
Bt b, RS UINME I EL (A R L 100%, PAE 73 HE AR IR .
Xi— Vi

BET RO I 30 J5E W7 DA 57 A SRR S AR 2 D W LD 2 1B R 5 RO AR o AR
Xy Y NPIAE T, 70RO AR AR A S L R R i B 5. XX, Y N
PR TR IR, T RARIE A,

@

x100% @)

Rgias =

X oY :g(xﬁ(z)Ayﬁu)) @)

Horb, xp(W)FRIRTEP B B HIBA 2 4L, X EAL RES IR IR U BIME,  yp()FRRTESBL p IO 4 &,
SEAEIR IR EZOEERME. B X, Y AW TS, TRARIEA,

X ®Y :g(xﬁ(ﬁ)vyﬁ(ﬂ)) ®)

Horp A RORBURME, v FORBURCE -
SE XS ERANMEIL B,

(6)
4, ER545Hh

4.1. TR R TE R S R R GE RARN
N ZGEVTAG AN ] TR AT R A Dl i 7 bR 022 S S A AR RO SR R R IS, AT LI U FE 30T R

DOI: 10.12677/sa.2026.151009 91 gt 5N A


https://doi.org/10.12677/sa.2026.151009

PRI

TEHA . 088 R A% HADUAS SRR Ak B B, 35T b T o5 06 1% S S B0 5 22 YA s T 97 0011 45 R A4
G, UMET BARRKERIEN . St L0 RO AL AN B RO NG T B AR R . ORI R T A N R A
TR B S 45 SR () O MBLRE S, JLEMETE RN 0~1, EREET 1 2R Wik B i m bl — 2, i
ER T S5 B A B ) A7 2 B S o 9 22 S5

s 2, FWe A RO I FE 2540 TRk, 28BS T 0.95, R AL IR E nT WOk 2 4L
HMX FIREAR T S A B 1 — Bk . AR, S BB A RO B R 2 S . B SRIE BRI
FETE S I AERF A KT, SRR S B AR B, 0 0 A S 1B (U 0T B 20 0.99, Ut W4
T DI G T i B 22 S N . X B BN TS SR BUR I B 45 R S R S AR AR S, TR
PR R LI B N 1 DK S S B B RO AR, R BRI B A R —

MR, A0 B RO G AT B E AN [RGB BRI B K, 300 A B AL A 1A I 30 S A T B 22
29 0.89, R BITE LT IEIR DX A5 B2 [B] 1) G i i 9 22 S ARG 98 H o LANDSAT 8 & Sentinel-2. MODIS %54%
R R BN, RS A OB KW J A T E T K. R A R SR O
GHINRGNERZE, TAEEHERL & 58 s T DUEIE AT & U5 4040 i B )k 30 g 5 3k 5 T+ 0.98,
Wi I TE 3 S XA ] A B (e B i 2R TR AS o — B, il — B, LD B ZE 5 i 22 YA ) J
SEAS— B 3 BRR

MIEARA I f R, BEEARIEAE K NETE I B 1, "R TRoe, Mimffescsma
RO R, AR ANE FERE 2 980 o I ASOR U AT B R B 1] 22 S U 8l,  RMG BE AA AR AL 1 o
el RTEIC R L IR, W S ST 204k B NG B B IR FFE R i K P X RIAZEMAEAE KIS,
B AR I R 1 i 97 22 S5 3 — 2B Uk 55

Cotton flowering and boll
stage

Cotton flowering period Cotton blooming period

ﬁ.us
it

Cotton boll period

Figure 2. Fuzzy similarity of band-level reflectance among sensor groups across four cotton growth stages. From left to right,
the stages are the squaring stage, peak flowering stage, peak boll-setting stage, and peak boll-opening stage. The fuzzy similarity
ranges from 0.8 to 1, with darker colors indicating greater differences between sensors. L4, L5, L7, and L8 denote abbreviations
for Landsat 4, Landsat 5, Landsat 7, and Landsat 8, respectively (same below)
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Figure 3. Relative NDVI bias among sensor groups across four cotton growth stages. From top left to bottom right, the stages
are the squaring stage, peak flowering stage, peak boll-setting stage, and peak boll-opening stage
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Figure 4. Relative EVI bias among sensor groups across four cotton growth stages. From top left to bottom right, the stages
are the squaring stage, peak flowering stage, peak boll-setting stage, and peak boll-opening stage
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Figure 5. Relative SAVI bias among sensor groups across four cotton growth stages. From top left to bottom right, the stages
are the squaring stage, peak flowering stage, peak boll-setting stage, and peak boll-opening stage
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