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Abstract

The theoretical methods for high-dimensional sparse process monitoring can only be put into prac-
tical application after validation in real scenarios. Aiming to address practical monitoring pain points,

CHEIREE

SCEGI A ARWEE, EH R, BT REARA RIS gt 5RH, 2026, 15(1): 1-7.
DOI: 10.12677/5a.2026.151001


https://www.hanspub.org/journal/sa
https://doi.org/10.12677/sa.2026.151001
https://doi.org/10.12677/sa.2026.151001
https://www.hanspub.org/

N
S

F

il

fh R

such as non-ideal data distribution, complex variable correlation, and significant noise interference,
in bioinformatics and industrial production, this paper is based on the proposed L0-L2 combined
regularization variable selection theory. The L0-L2 combined regularization can not only select var-
iables and shrink coefficients, but also efficiently handle correlated features and accurately identify
abnormal variables. Meanwhile, the logistic regression model is used to sense shifts in specific direc-
tions, and the maximum function is adopted to dynamically integrate the two, forming a direction-
adaptive monitoring statistic. It is a new variable selection control chart (LQSVS), which combines clas-
sification algorithms to solve high-dimensional and sparse classification problems, focusing mainly on
theoretical innovation and simulation verification. Now, research on real-data application validation
and optimization is carried out, taking the UCI E. coli protein dataset as the research object. Firstly,
preprocessing is completed according to the characteristics of real data, and the Bootstrap resampling
technique is used to optimize the calculation of control limits. Secondly, the optimal parameters are
determined through controlled variable experiments. Finally, under the benchmark of in-control av-
erage run length (ARLy) = 200, it is verified that the average run length for out-of-control (OC) data
(ARL,) of this method is as low as 1.68, which is significantly better than that of traditional control
charts. The experimental results show that the proposed method can effectively solve the problems
of “low sensitivity to sparse shift detection and difficult parameter adaptation” in real high-dimen-
sional data, and provide a practical tool for scenarios such as protein localization monitoring and
industrial multivariate process diagnosis.
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Table 1. Comparison of the actual ARL1 values with different numbers of selected variables when ARLo = 200. The minimum
ARL values obtained from experiments

= 1. 3 ARLo =200 Ff, EXLHIE ARLI STERITEFEHME 2 BLLER. B LERENH/ ARLLE

SVS chart (L0-L2)

R=1 R=2 R=3

ARL1 1.680 1.760 2.090

Table 2. Comparison of ARL: with different shift magnitudes ¢ in data simulation experiments when p = 5 and ARLo = 200
F2 2. X p=5TM ARLo = 200 i, HUIERIULI P ARLL STREIRE K o HIELIR

SVS chart (L0-L2)

R=1 R=2 R=3
0=1 9.9826 9.7878 10.2398
0=2 1.4774 1.5244 1.5024
0=3 0.6940 0.6974 0.6836
0=4 0.1796 0.3272 0.9356
0=5 0.2934 0.7296 0
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Monitoring Performance of the LQSVS Control Chart(R=1) Bootstrap Distribution of SVS Statistics for IC Data
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Figure 1. Monitoring performance of the LQSVS control chart and Bootstrap distribution of the SVS statistic for its in-control
data when sparsity R = 1
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