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Abstract

Wind power time series exhibit pronounced non-stationarity and multiscale fluctuations, posing
significant challenges for high-accuracy short-term forecasting. To address the difficulty of conven-
tional models in simultaneously capturing trend, periodic, and high-frequency components, this study
proposes a two-stage short-term wind power forecasting framework integrating adaptive Variational
Mode Decomposition (VMD), fuzzy-entropy-based complexity analysis, Transformer-LSTM deep fea-
ture extraction, and XGBoost regression. Theoretical power is first selected as the decomposition
target, and the VMD mode number and penalty parameter are adaptively determined on the training
set via Bayesian optimization under a strict zero-data-leakage strategy. The intrinsic mode functions
(IMFs) are then reconstructed into three collaborative components—low-frequency trend, mid-fre-
quency periodicity, and high-frequency disturbance—based on fuzzy entropy, enhancing the inter-
pretability and stability of the input features. A DeepBlock network combining Transformer-based
global dependency modeling and LSTM-based local temporal learning is employed for feature ex-
traction, followed by XGBoost to perform nonlinear regression. Experiments conducted on 15-mi-
nute resolution data from a wind farm in Guazhou, Gansu Province (2023~2025) demonstrate that
the proposed method consistently outperforms multiple benchmark and ablation models in terms
of MAE, RMSE, and R?, validating the effectiveness of the proposed multiscale two-stage forecasting
framework.
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Figure 1. VMD-transformer-LSTM-XGBoost model
1. VMD-Transformer-LSTM-XGBoost 1!

T T o AR B H 37 4 B £ o ) @A e Rk B H B K
L o} 2) =X o 60+ L Jeu ] +n(-Tu, (0

2

20y0-Tuo] @

DOI: 10.12677/sa.2026.151025 268 St 5 R H


https://doi.org/10.12677/sa.2026.151025

SRk 5

Horp g gORAETRE A R ME A (L) A T F3RIE SR (ADMM), AT
. . y)
3(w)- X0, (w)+ -0
Gkn+1(W): p=k .
1+2a(w-w,)

TW art (W)|2 dw
Wkn+1 — ODO - (4)
Th (w)| dw

[
0
i"ﬂ(w):i"(w)ﬂ[y(w)-za;“(a))j )
k
oo n RIS, HATS i s, i foidst, 2l

~ ~ 2
ukn-¢-1 (a)) _ ukn (60)"2 -,

A 2
U (‘0)”2

©)

(6)

k

L& > 0 gl shl THi .

22.2. EEFREGER: HAEIRIIER)

ASCEFE B IR M AEXGENE T VMD [0 ffxs G [12]. ML XGEF 5, BRI Ol DR e
FRARLRAE W, HGE it R ST HARE N —2 A BT 20 BUE b 1Rz R AN, 12580
SCHL VARG5S : VMD T2 B 00T Dh R A5 5 10 2 RUZE M, 1M Ja S 1 37 2 > BAR ) AR Ay 5
bt F1E S R R, MR R AL IR TR e AT Ish S A e 2, RTHE AL 10 S 1A B He b

2.2.3. VMD &# it ST H it 5 Kag

SN IBE G 3 RSB0 TR 25 SR WG, A SCRIE T TPE (9 WU iRk vk ANHE I ZRdkE L e
(Kygains Xain )+ FETEBRIEAE EAOTRAAFE (K, 0y ) FI T 55 5 S HOESR[13] [14]

2 RS K oy = Max (K, Koy ) o TSR 23 IR P24 [ 5 A FH IR S (K ain s Ogain ) » A TR
BRI VA FIHTE R T8 Ky o ZMFERAIRINREAR S ST SERAL, T FRIE VAL A 7 R 5E[15].

2.3. Fuzzy Entropy (FE)EZEEE
RNEAEA IMF PR3 (RN AR REEE), FAERR S HEMKTE. HSHEONMNLEE m, A
Z r(— MBUR A AR 2 ) 0.1~0.25), IR ZEIR 7 (BRIA 1).

FE(x;m,r, N)=—In[q;::((rr))] @)

Hor @™ (r) ATEBSERE m T AIRUERE r IR, X IMF FSl, = {u, (1)) F iS5 FE,
[16].

24. BEF FE=XMEHEEN

BT IMF IR 8 BRI, AR SR B A N =R AR S (Co-IMFs), 73 530Xt W i sly - w34
AURATES BTy, SR T8RO/ — B BAKR, XF VDM 243 211055 K A IMF T SO i (2
BHm=2. r=02std(u, ). z=1), JFMRIENZRE LB AH0 = 0 CLBRMET, 5 T, #4704l 24

DOI: 10.12677/5a.2026.151025 269 gt 5N A


https://doi.org/10.12677/sa.2026.151025

etk &%

FE, <T, WA CBIABIAS, 4T, < FE, <T, IR BUANBA, % FE, > T, WA Am st sh b,
e, SR IMF AR )= 2B RIS 1B 6y, 0,) » TEAUR S BRI A SHE, s @)FT.

¢ (t)= > ul(t), j=123. 8

keGj
2.5. Transformer-LSTM-XGBoost 75y E& 7l 15 5
AHIFFE BIRZ O & — AN P BETTUI ZEAE) , "B K 5 2% A S AT 45 A b g e A 1 BRI [ U5 ) AN T4 55
1) i s Hii
KT RPIR Parzen it 23 (TPE) I DIH-#r itk 7732, %t Transformer-LSTM {44 ) S 58 2 B0k AT H 5)
%, DRERAIEE ERMBNNSEUA[6], SRR RINE 1 ir.

Table 1. Bayesian hyperparameter optimization search space
= 1 NHEnBs R R=TIE

SHE| HESH HRIEH
R g 1) Transformer 23 [1,2,3,4]
e =WAD 4 [2, 4,6,8]
AL o B [16, 32, 64, 128]
LSTM Baumk 5 e 5 [64, 128, 256, 512]
LSTM Zw i/ f#hid J2 41 [1,2]
WS H
2] % [1e-5, 1e-2]
1A= U AN [32, 64, 128, 256]
Dropout 3 ¥)514543[0.0, 0.5]

2) H—KrB: Transformer-LSTM V445 AEHR U2 o
B VMD F3 i 5 1 22 4E I TE) 7 21 A N 4 B D B e K BE B0 VR FERFAE 7] & . DeepBlock  Hi
Transformer 4ifid#s 5 LSTM ZHi%: Transformer H @A KRR, LSTM H Tt — D305 7 S &S RFHAIE
[17] [18].
NG E 2 Pros:
BN B W] A
h =LSTM (Transformer(InputProjection(XHH)))

Hh X BEANMZ 475, | VMD 73R8 20 1) IMFs. B RI{E 5 R EIA H 172 ] 55 1 AR . hr 23R
EHH P R B2 AR A 1) 2

DeepBlock R 554 k& SHOH BT AR B S0k #, BRI WT % 2 Bk,

3) % “KrEt: XGBoost [a] 95 2%

B 55— MBS B ARE B he %N, H1 XGBoost 24> H 5 H bR Az [ AR MRt JF%
TR 25

XGBoost & FEHETH VLRI —Fh = 2B, @ E AR ISR — RPN, IR A R
— RO P BTN S5 R 2, AR BT A B TIO &5 ROMBCR FI S B R At . HARATE T mitERe,
TE AR 2 B R S5 FEA0 S b S B e B B A TRAR I TNAS B2 s EstE, WE RN, fed P ki
e,

DOI: 10.12677/5a.2026.151025 270 gt 5N A


https://doi.org/10.12677/sa.2026.151025

etk %

ZLTENFHA

fBi4n . CoIMF1,
CoIMF2 CoIMF3

WMABRAE
LR Ed_modelEE
ol

TransformerE
‘ ‘ CH Lﬁ%ﬁh ‘
4 TransformerZg 5 2% Y
: (K i) |

LSTMRY g B#E =
AT NZSH FrE LS

HHE % IR TR VFERE
—PEREIRES (b T (f5]: XGBoost)

Figure 2. Internal structure of the DeepBlock network
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Figure 3. Correlation analysis heatmap
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NE BV PN L BE,  FATRA BLR A 2 B F s

442404 5 (MAE)
MAE:%iZ:in =] ©)
)75 iR % (RMSE):
Rl\/lSE:lan:(yi -v) (10)
XEBRT- 230 11 73 iR 2 (SMAPE):
0p N )
SMAPE = 1024 > (|y|i)lll—|9)illll 7 (11)
PE A H(RY):
R?=1-3 (yi_y‘); (12)
= (Y -Y)

4.3. SEREER

43.1. BERM VMD S5 EH

1. VMD 73fi#t

BT ARG B EAE PR, B 7 Gl T RESE R RN TS NEIRT IR R, &
SCRA VMD 3R ThE o 3+ 74 s DU feifie 28 K=8. K 8 @R T IR )
R AR IMFL~IMF8. #157s 2 IR @ AR BN 2 JRUE 54 IMF1~IMF2 a3l (KO
P8l Sl B P AE), IMF3~IMF6 Ay it SRR B (s H 9 20 H REEARAL), IMF7~IMF8 I AitiEa %5 1t
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(RAEKIAZR AR 50) [24]

2. HEH

K9 @R T IS FTA IMF 43 S ISR A 15 B0 AN IMF 72 V3 — A A2 il b S 30 H B 8 4y 3 1
WREPE, BT OR4F EH S BRI B R R R

R IMF (BRI 2 AT (W] 10 FroR), ARBESESRE FEIEEZER: IMF1~IMF3 (R
R, KR SRS Sy IMFA~IMF6 b T iR &5k, 2B MR AT 5l IMF7~IMFS AR 4 i
K, RINFRIURIES

BT EREREST, K IMF 35 39008 =K RIS (Co-IMFs):

1) fRAEEIN Co-IMFL:  HEE KA IMF7 + IMF8 2k, £ BRI K Bk 4

2) AT Co-IMF2: 1 IMFA~IMF6 5%, T4 B I Eh 5 RS E ARk

3) ESLENIA Co-IMF3: i1 IMF1~IMF3 #)J%, XF R imitsh ShEpLE .

=2 Co-IMFs Rt 2z 4 Th 2 5 51 (1 2 RESNASRHE, Ho s E L S mE 11 s,

3. BREAEL K H3E NS HT

2% F A FAAZE O A2 AR B0 P [ R 2R B A AT 2L, AR T [ 5 1) K . 3R iE Hfadd b,
FAE E VMD IETTI 25 o, ENZE BN T A K = 6, 8, 10, 12 ffil. £3RRTA
A K{ET, VMD-TL-XGB BAEMREE EHIPEREYE R

M B 3 R RURIL, 4 KA 6 A0 12 I, ARt (1 H i RMSE: 5.03~5.19; 6%
MR RMSE: 40.31~43.85) (%5 Fa €, LA Co-IMF AL GEAG RIRBUZ 02 N ERHIE, X K [H251k
AU, BAR K = 12 WWEUS B AMRKEFE, 1B K = 8 RS IR RN R, AR EEF R, KE T
I DU A B E IR SR K = 8 BIE BRI . 1R Rtk T A | R RS, B AR s SO
WA PRI N SREAIE o

43.2. TMEEREAIIRL

VPSR AL AR S bR F 35 R B ERE, ANSOR A BT 3l & O 0 S iR sl T S, oIS A T
RIS TR o AR L A — I 0 (ORI FH L i AT SR A3 10 D SRR HE AT T, DAASEADL L S 3 2 1 R g AT i AR
[25].
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Figure 7. Time series of wind speed and theoretical power
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Figure 8. VMD decomposition of the training power series
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Figure 9. IMF spectral distributions (test set)
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Figure 10. Fuzzy entropy distribution (test set)
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Table 3. Comparison of model performance under different numbers of modalities K

3. NEMRESH K THIRAERERTLE

K YIZRIN [E](s) 1 H¥MW RMSE 3 HTRM RMSE  SE#li4E RMSE 58 B 4E MAE
6 167.88 5.19 14.13 43.85 26.05
8 119.20 5.14 13.97 43.20 25.73
10 251.53 5.19 14.56 43.00 25.69
12 247.93 5.03 13.40 40.31 24.02
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Figure 11. Co-IMF reconstructed components
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Figure 13. Three-day rolling forecast
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M 4 T, TP R A R R A R R T A s — B MER Y, SRNG5S 0. IRFERHEFE Y
LRl A AH 45 sems B I AL . D ass REoR, 51N VMD MR BRI FR T
FIAEFAaE, 1T Transformer-LSTM MR FERFIESR IO Lt BLAEAE A IMF REIE B A FE 3R 3R A R
VRS, R AE SR I [ VA FO0000 A 1) 79 B B R A A TE RS B O T B P BE TR, B0IE T i 4 75 R
LT S TN 55 A 3

Table 4. Performance comparison of all models in the one-day forward prediction task (96 steps)
4. T EEBEREBITUN—X(96 £)1ESFHIMEREXTLL

iR MAE RMSE SMAPE R2
ARIMA 24.2652 34,5624 105.0101 -0.1987
LSTM 6.1079 10.2749 58.4953 0.8932
Transformer 24.0422 33.0306 100.2331 —0.0934
XGBoost 6.2222 10.4213 59.6989 0.8910
TL-XGB 4.3953 6.3447 44,9099 0.8285
VMD-XGB 3.8153 5.7690 55.1911 0.9666
VMD-TL 3.4199 5.9665 49.7672 0.9643
VMD-TL-XGB 3.2356 4.8246 49.6973 0.9752

5 MEHERESH

JPEALE VMD-Transformer-LSTM-XGBoost (V-TL-XGB)YFE R 7E Sz ok TRE &6 8 b (w471, A5 T3
BRFEWME, RN EREUI 2 5 HE B B RO (0] 5 25 54, IF 5 R BRI T Xt . 3T
o AT, B PR TEAN [F R g s N RE I, R TR I A SRS
51. HHEHFHEEWK

SEIOTERC & RTX 4090GPU (24 GB A7) Lt AT, #AFIAEE N Python 3.10. A FLLE:, Fra B H
I 2555 HE B X5 25T A [R] R N B T) 2 11 (7 52 96 AN [E)20) Fi ik 4E (2025 -5 H 1 H&E 7 A 31 H). %5
Guit T AR e e SE B SRR VI GRS P- 2 1], DA B HEAN I A AT B A0 VR B0 TR0 (141 25 B A
T (]

Table 5. Comprehensive comparison of computational time and performance of various models

5. ZEBITERE SRR A X

i YIZERI E] () BT HERI 1] (M) X4 RMSE
ARIMA 13.646 0.67 34.5624
LSTM 102.327 5.00 10.2749
Transformer 211.629 8.50 33.0306
XGBoost 70.527 2.50 10.4213
VMD-TL-XGB 119.196 5.83 4.8246

5.2. EZRERFEN
VMD-TL-XGB #E8 fi B A 5] T4 = EoRIE T = AN 4
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1. VMD Fpfif: HIFHERELHO0(K-NlogN), H K ABEEL, N NTFHIKE. EARBELIIS%
HEZEr, ANAENGEERMIGUELE B AT —k, FERFRIEATT 733, R EZRHE R 24

2. Transformer-LSTM DeepBlock: X /& Il ZrB B 1) 32 BRERS SRR,  Horb By Sl A A g5 M fe
KIFH 5 m e N R BGm T E I8, DUk S8 0 — 2B 1 1 I 2R [a]

3. XGBoost [alH#%: HAZ IR TR MBS s, HZGRE S TIREM Y, (HEERLE S
T TR R AT FAAR Y

5.3. BRARSH

1. HRTHCRIS B

WsRHAE: 1235 R B I ARSRECNS ZEH B RIRDE . BT RS A ERE, X
TIIHS SR

HARGERL AT AP VMD-TL-XGB A ALE T 275 . R LN ZRi 1] i 130 2 S A
B, (S ZER T 5 — Transformer 2544, HIEE PR B ARIRTS T W2 RS L (RMSE = 4.82) . 5 [E ]
H R85 DA H SR D SRR I, AR AR R S T R A 2 A B AT AT

2. SN RE S i A TR

WL : SO AR RE B 1 /N N DER BB B, T B 3R B s il S e Ay, %y
AR RS P EORE -

BALERL A HT: T VMD-TL-XGB FIHEHS R &5 50 TR WA AL 3% K B3, 3
FERR ity SIS PRS2SR T AT REAEAE — 8 IR X35, B R A A . 7EVH R LS, VMD-XGB
FELRFFEL = TRINRS FE(RMSE = 5.77) B[R 2 35 FRAR 7 UF B BE, TEHE B 580 2 AU T 8 s~P A

3 THI ) AN [ 37 S5 PR R 7 44 5 i 3ok S s

SRR R B 3 S R R W RS, RSk AR ] % JE DL T HEHE

1) MRV EAY. A FHRREEEOR, B V-TL-XGB BRI AR 2= — AN/, R4
P9 2 (WA T K] LSTM BRI 1> 5 R R 42) o

2) ZERgA R 1R DA B AR 5L NHERER MBS HOMAR A R, A S8 RREE - SR B L)
DeepBlock 2244 .

3) HRE TAERML: ¥ IR BUf 2 1) VMD 30 Co-IMF BRI, ek 7E 2R+ 5T 4

4) PRV EAL S ETR . RS 5 8RB Transformer-LSTM 5 XGBoost [+ 5 77 i ik

6. &iE

BEXE DR e SR TR 55 22 ROBERFIE R 25 (0 1), ASSCHRH 1 —Fh il VMD 73 fi# . Transformer-
LSTM $54EHR LS XGBoost [ AZH BRI PI BT B PINHESE o ik DU i At FE MR E VMD 248, JF45
RSB AR S A, 2 INEA RERT T RARIE I 2 RIERILGE ST BT S XU I 2l 1) S
g RELW], PR RUAE HOD R RN TR 55 0T 2 R R HERR Y, RENS Tl 220 i Ty SR AR ke 35 -1
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