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Abstract

Stock prices are influenced by various factors, including economic conditions, investor psychological
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expectations, market trends, and macroeconomic policies. Therefore, accurately predicting stock
price movements remains a significant challenge in the field of finance. In this paper, we combine
technical indicator analysis with a penalized trinomial logit model featuring bi-level variable selec-
tion, and propose Sparse Group Lasso/Group Bridge/Composite MCP/Group Exponential Lasso pe-
nalized multinomial logit models to forecast up trends, sideways trends and down trends in stock
prices movement trends. Firstly, 58 important technical indicators are selected and divided into 13
mutually exclusive groups. Models are constructed for three U.S. stocks: Cencora (COR), Cisco Sys-
tems (CSCO) and McDonald’s (MCD). Secondly, parameter estimates are obtained using the training
set, and the predictive performance of the models is comprehensively evaluated on the test set
using the confusion matrix, accuracy, Kappa and HUM. Finally, comparisons are made with Group
Lasso/Group SCAD/Group MCP penalized trinomial logit models, SVM, RF and ANN. The results demon-
strate that, across all evaluation metrics, the proposed methods outperform the other 6 approaches.
Therefore, this method can effectively improve the prediction accuracy and provide investors with
higher returns.
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FIBORIEARAIFFEA LG, SINZ AR BRI R, R IR B A 235 T RE 4R bR, R
FEAL N BE— RSB TE bR . A XUR AR R (1 =300 logit B 40T Fiross -

DOI: 10.12677/5a.2026.151016 158 gt 5N A


https://doi.org/10.12677/sa.2026.151016

FR ki

Qs =18)+2 2P (I8]:2) @9)

Hrr, P(Ilﬂ(k.) ||;/1) FORIETTREL, A RIS @ S5 T A AR SR B0 DU by A U2 A &
EFER =0 logit BT
1) Sparse Group Lasso (SGL)ZE §if =77l logit 17!

QAi2)=1(A)+ 5| @-a) 22 m | + o2, | @7

Hit, ael01], Ha=1H Lasso &, 5o =0y Group Lasso f&fi; p FxH | HEARIRFIAE
BT
2) Group Bridge (GB)7& {ij =i logit 117!

QA =1(B)+ 222wl A (2.8)
k=1 1=1
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AR EAAEAERN AT ), SR OVA Helg A SCBLF . s, Refig A a0l 2 A S 1) 4 2T
T K

P GB &1 =1 logit B %, KA OvA SIS Jo 75 ZAR A1) B AR R EUN -

mﬁin{L(,B)+ﬂIZ:: p/ H,B(,) 17} (3.5)

Hr, L(B)= HZt > 1Iog(1+e j Y Xin B Hﬁ*ﬁﬁlﬂ%ﬂﬁfﬂﬁlﬂiﬁ@ﬂ@Eﬁl)‘diﬂﬁﬂf‘i&9’%
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Table 1. Three-class confusion matrices

F 1 ZoEREER

S 1 ¥, =1 iz 2: v, =2 T 3: ¥, =3 &it

HaK L Y, =1 V(11) V(12) V(1,3) V(L)
HK2: Y, =2 Vv (2,1) V(2,2) V(2,3) v (2,)
HY23: Y, =3 V(31) V(3,2) V(3,3) Vv (3,)
it V(1) V(-2) v(-3) V()

Kappa R —FH TPl 0 RAE b —BUE I Goitdats, HEAXT:
Zi:l P _3211 Pr Pk , (4.3)
1_Zk:1 S
Hr, P = P(Yt+1 = k!YAt+1 = k) v Py = P(Yt+1 = k) » P = P(YA1+1 = k) - Kappae (011) HL BB R R R

RS o
BEXt =42 im) i, mlimk g =48 ROC #h K B AR K 4> 28 RE, JF 115 ROC i~ 4k
1, B HUM (Hypervolume Under the Manifold). HUM & AUC £ 2 7 J5 [l @R 4k, REfE 28 & R st

DOI: 10.12677/5a.2026.151016 161 gt 5N A


https://doi.org/10.12677/sa.2026.151016

LIS

BENAERERTE, ARy
HUM = jjfl(n) .‘[fM —2(trtm—2) fM,l(Hy"':tmfl)dthlmdt?dti’ (4.4)
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5. SLiEST 4R
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PEIE I, 2019 4F 12 H R T sh R, ki 2013 45 10 H 9 HZ 2019 4F 9 A 25 H H#iE 1 1500
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Figure 1. The stock price trends of COR, CSCO and MCD
1. COR, CSCO. MCD IR EH

R W S R o N A AR 0 oy . o, ISR TR S H0 Al oh, S T A
GO ABEARY (1) T AR o AR SR DL IREAS R 20 LG, K 7000 B 1 I 2R 5, 30% I 4 1 il il 4k
BRI E, EH 2013 4F 10 A 9 H % 2017 4F 12 A 8 HI¥) 1050 £ MM A I AE A ZrEE, 2017 £ 12 H 9
H % 2019 4£ 9 A 25 H 1) 450 2% WA 1F A iRk £E .
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PRI . AR WAIERIAE B, SACE AR AT MBI RAE, S s
FIh A B ASORF R 6 TTR SHSA5) 58 MATRER, QIR ERETHISMA). S8BT
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(OBV). ZHH(ROC)A . #ix 58 AR X,yve--, Xosy » IFHUESH LR 34 LTI, o5
HORHRA 13 MIRTAMAL FEELTR X, = (X, Xy ) Hf? X 55 | ALIBAR SR

ST A AR AR I % 50, RIS R AR B R E 1 5 1 FURE, FRRIE
U500 R AR RN 6 I 9 T, 2SO AR A R B TR . b5 R

ALFIRIEA X, = (X Ry ) » RO S BUPE BT 92T X T

5.3. EBEEEE

IEMSH L FEBRGR TR Z R &R, IR . FEA KN A 8075 %E LA
PR G5 . A B N P RO EAR B OREE, BARR e AR 22 A M HUE R PT g 2 g 0] FR0i E
HEIEFEHPFELRE, FEEERHANLE . A SCRHAMEE R R FRERAESEHE. YT Sparse
Group Lasso &5, 2F &% H o fA ¥e5E; XT Group Bridge A1 Composite MCP #E57, AR &k y Al
A Y5E; YT Group Exponential Lasso 711, ikl « M4 RE,

o, BEMSH alylc WIUETCHE, T8 —ANEUE, ER—AEA 100 MAEM A P8, HkE
DIBaANSHA G . N T IR R SEA S, RA 10 I8 URUF T 5/ R, R FET X
IFH R R BRI S B G R RE AL . i F 28 SUIAIE I H & B il T — R SRR R 2=, 125
I ZACRE 17, BBAIYE B b RS . ¢ 2 JTE I AR S 2R AN 58 X6 R 1 B L 2 5
Ay Horb 2 (1 =1,2,3) 23 5 =A S0 R IE LS HL .

Table 2. Optimal parameter settings for the four classification methods
2. UM EFENERNSREE

VLTS JivE RS HBE
SGL (a, 1) (0.86, 0.0067)
CoR GB (7,444 (0.80, 0.0079, 0.0029, 0.0080)
CMCP (7, 4,4,,4;) (3.80, 0.0098, 0.0052, 0.0100)
GEL (7,4,4,,4;) (0.20, 0.0152, 0.0212, 0.0519)
SGL (a, 1) (0.96, 0.0110)
csCo GB (7,44, 4) (0.90, 0.0100, 0.0095, 0.0098)
CMCP (7,4, 4,,4) (3.80, 0.0100, 0.0100, 0.0100)
GEL (7,4,4,,4;) (0.20, 0.0228, 0.0383, 0.0435)
SGL (a, ) (0.60, 0.0088)
MCD GB (7,44 4) (0.30, 0.0090, 0.0078, 0.0100)
CMCP (7, 4,4, 4,) (4.30, 0.0100, 0.0100, 0.0080)
GEL (7,4, 2,,4,) (0.10, 0.0228, 0.0268, 0.0400)
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B Hrp, RSN E S PR (DPO-C). il Sk EhIEFR(EMV). AE5) 3 5 bR(ROC)FE DU Rk i
W RBAHME R, VA HAR R T 3L I R B R RE . WA A8 30 5 s B2 )R A6 R LA %
A 728 I 1) 57 10 ) RS kA S 0 P 32 sl 3 BT RS, & T S B4R

5.5. Fmlt4ERE

BRI ST 2 5, SR INAREE EVPAG TR AE . v 7 WI A SC TR O A Rk, 555 S0k
[19]9 BT Hi 1 = et 732 DA S = Fh & i L35 2% 21 1515 (SVML RFEL ANN)EAT S B 0B o JRVE R RE
AT RS AR T 25 55 L SR 2 T B B G FR AN BE PPl B AR R R, ] DL BT AR R 6t
TAFZEM BRG] 2 57 o 8 = ANIREE B VUSSR (1 =40 FIRIE AR B, T DA ok SRS ) R 2k
#E#f%(D-ACC) T HEHf % (S-ACC) LK HERAI 2R (U-ACC) 2R BUS FIgs 7 5, ki v DARR 4 R BU%
HVRR 7 BEIX /N b 45 B =4 ROC i, HAKWIE 2~4. ROC M 1) ="M5%E 1. 2. 3 43l E R
IER K= A RBIMES, BUEEE N[0,1]. ROC #hTH N AR, HUM fE i, AL 2 5 T
PEREERAL -

7 3~5 4 10 MO VEE =N FE B LTS R . 454 ROC i L& Tl &5 R A H, DUFh
WA WA EIE R = logit B84 FNPEREAR T AN PREAL, Rl /e Kappa REX —IP54E R
b, BERGERIUH B, R SRR NG GE A SAR T 0 K —EE

(a) SGL (0.5945) (b) GB (0.5911) (c) CMCP (0.5845) (d) GEL (0.6068)

(e) G-LASSO (0.5901) (f) G-SCAD (0.5827)

(h) SVM (0.4483) (i) RF (0.4516) (j) ANN (0.4365)

Figure 2. The ROC surfaces and the HUM values for COR
2. COR ##E5 /9 ROC BhE & HUM &
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(a) SGL (0.6476) (b) GB (0.6323) (c) CMCP (0.6235) (d) GEL (0.6291)

(e) G-LASSO (0.6157) (f) G-SCAD (0.6070) (g) G-MCP (0.6258)

(h) SVM (0.5448) (i) RF (0.4314) (j) ANN (0.4675)

Figure 3. The ROC surfaces and the HUM values for CSCO
3. CSCO ##E&ERI ROC BhE & HUM &

(a) SGL (0.6361) (b) GB (0.6331) (c) CMCP (0.6255) (d) GEL (0.6346)

(e) G-LASSO (0.6284) (f) G-SCAD (0.6317)

(h) SVM (0.5417) (i) RF (0.5689) (j) ANN (0.4977)

Figure 4. The ROC surfaces and the HUM values for MCD
E 4. MCD %15/ ROC fhE & HUM &
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Table 3. The prediction comparison to the 10 methods for COR
Fz 3. COR H#E&E £ 10 #hr7 AR FUMI M BB L3

D-ACC S-ACC U-ACC ACC Kappa HUM

SGL 0.7342 0.4571 0.7112 0.6600 0.4815 0.5940
GB 0.7785 0.4095 0.7433 0.6778 0.5019 0.5911
CMCP 0.7658 0.4571 0.7166 0.6733 0.4997 0.5845
GEL 0.8291 0.3048 0.7807 0.6867 0.5063 0.6068
G-LASSO 0.6772 0.4857 0.7219 0.6511 0.4690 0.5901
G-SCAD 0.7532 0.4571 0.6791 0.6533 0.4697 0.5827
G-MCP 0.6899 0.5143 0.6631 0.6378 0.4518 0.5753
SVM 0.5823 0.5238 0.4813 0.5267 0.3071 0.4483
RF 0.7025 0.3810 0.6096 0.5889 0.3748 0.4516
ANN 0.7152 0.4190 0.5241 0.5667 0.3505 0.4365

Table 4. The prediction comparison to the 10 methods for CSCO
= 4. CSCO ¥#EEE L 10 #75 AR TN M RELLER

D-ACC S-ACC U-ACC ACC Kappa HUM

SGL 0.6525 0.7778 0.6264 0.6800 0.5230 0.6476
GB 0.6738 0.6963 0.6552 0.6733 0.5110 0.6323
CMCP 0.6596 0.7630 0.6149 0.6733 0.5132 0.6235
GEL 0.6454 0.7852 0.5862 0.6644 0.5015 0.6291
G-LASSO 0.5532 0.8370 0.5460 0.6356 0.4603 0.6157
G-SCAD 0.5603 0.8667 0.5402 0.6444 0.4743 0.6070
G-MCP 0.5674 0.8222 0.5862 0.6511 0.4820 0.6258
SVM 0.3121 0.3630 0.9023 0.5556 0.3066 0.5448
RF 0.4468 0.3407 0.8506 0.5711 0.3403 0.4314
ANN 0.4184 0.6741 0.5805 0.5578 0.3388 0.4675

Table 5. The prediction comparison to the 10 methods for MCD
2 5. MCD ##E5 L 10 #75E BTN M4 REEL 4R

D-ACC S-ACC U-ACC ACC Kappa HUM
SGL 0.6545 0.7340 0.6058 0.6756 0.4874 0.6361
GB 0.6909 0.7438 0.5693 0.6778 0.4910 0.6331
CMCP 0.7182 0.7044 0.5693 0.6667 0.4769 0.6255
GEL 0.6909 0.6946 0.6058 0.6667 0.4778 0.6346
G-LASSO 0.6000 0.8227 0.4526 0.6556 0.4397 0.6284
G-SCAD 0.6455 0.7438 0.5620 0.6644 0.4667 0.6317
G-MCP 0.6182 0.7488 0.5693 0.6622 0.4624 0.6247
SVM 0.8091 0.5468 0.3577 0.5533 0.3243 0.5417
RF 0.5545 0.7340 0.4599 0.6067 0.3653 0.5689
ANN 0.6545 0.5271 0.5912 0.5778 0.3522 0.4977
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AL = R EE B AT TN G, 52T 58 MEARTEbRiGEE 1 VUM A SUZ AL B IR FE IS =T logit
BERY,  FT- T A S0 o i bk, R ALAN TR = Aiadh . EEXE SGL &S =0l logit A58, HFF LR FHARAR T B%
BOEBATSHAN T . NIRILZ 4y BRI AR H AR BB R R, AHIE ST AR AR R One-vs-
All (OVA) W& AT 1] LA, 4 S5 46 =40 ) J A R =AML ) 3 AT S, s HRiBALAs T L
HHATRMA BBE 2 G, fE=NEREE AT TR Rk, LikdEmiaR .. SAMER%. Kappa
ZFE. =4 ROC HhHAI HUM {E 45 A VP EL T E . 45 SR A A SO H A VR AE §71 =T logit A7/ 7l
D e v R B SRR, AR T R BEdEAT 4K EARHIEEFER) G-LASSO/G-SCAD/G-MCP &4 =
T logit #5674, [FIRHZZERT SVM. RF. ANN X =FMEGLINLAR T 2] JiE . X 3R BH 3 B 22 (10 43 2 [F] A e
PELH P BB R AT DR = O A PERE . [FIR, TR R4, AR R BB E AR E S

SE K

[1] Biu, G.S. and Kusuma, P.K. (2023) Stock Market Volatility Analysis during the Global Financial Crisis: Literature Re-
view. Educational Journal of History and Humanities, 6, 2510-2520.

[2] Engle, R.F. (1982) Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom
Inflation. Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773
[3] Afeef, M., Ihsan, A. and Zada, H. (2018) Forecasting Stock Prices through Univariate ARIMA Modeling. NUML Inter-
national Journal of Business & Management, 13, 130-143.
[4] Ballings, M., Van den Poel, D., Hespeels, N. and Gryp, R. (2015) Evaluating Multiple Classifiers for Stock Price Direc-
tion Prediction. Expert Systems with Applications, 42, 7046-7056. https://doi.org/10.1016/j.eswa.2015.05.013
[5] Yun, K.K., Yoon, S.W. and Won, D. (2021) Prediction of Stock Price Direction Using a Hybrid GA-XGBoost Algorithm
with a Three-Stage Feature Engineering Process. Expert Systems with Applications, 186, Article 115716.
https://doi.org/10.1016/j.eswa.2021.115716
[6] Long,J., Chen,Z.,He, W., Wu, T. and Ren, J. (2020) An Integrated Framework of Deep Learning and Knowledge Graph
for Prediction of Stock Price Trend: An Application in Chinese Stock Exchange Market. Applied Soft Computing, 91,
Article 106205. https://doi.org/10.1016/j.as0c.2020.106205
[71 Vuong, P.H., Dat, T.T., Mai, T.K,, et al. (2022) Stock-Price Forecasting Based on XGBoost and LSTM. Computer
Systems Science and Engineering, 40, 237-246. https://doi.org/10.32604/csse.2022.017685
[8] Yuan, M. and Lin, Y. (2006) Model Selection and Estimation in Regression with Grouped Variables. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 68, 49-67. https://doi.org/10.1111/].1467-9868.2005.00532.x
[9] Huang, J., Breheny, P. and Ma, S. (2012) A Selective Review of Group Selection in High-Dimensional Models. Statis-
tical Science, 27, 481-499. https://doi.org/10.1214/12-sts392
[10] Huang, J., Ma, S., Xie, H. and Zhang, C. (2009) A Group Bridge Approach for Variable Selection. Biometrika, 96, 339-
355. https://doi.org/10.1093/biomet/asp020
[11] Breheny, P. and Huang, J. (2009) Penalized Methods for Bi-Level Variable Selection. Statistics and Its Interface, 2, 369-
380. https://doi.org/10.4310/sii.2009.v2.n3.a10
[12] Wu, T.T. and Lange, K. (2008) Coordinate Descent Algorithms for Lasso Penalized Regression. The Annals of Applied
Statistics, 2, 224-244. https://doi.org/10.1214/07-a0as147
[13] Breheny, P. (2015) The Group Exponential Lasso for Bi-Level Variable Selection. Biometrics, 71, 731-740.
https://doi.org/10.1111/biom.12300
[14] Glonek, G.F.V. and McCullagh, P. (1995) Multivariate Logistic Models. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 57, 533-546. https://doi.org/10.1111/j.2517-6161.1995.th02046.x
[15] Novoselova, N., Della Beffa, C., Wang, J., Li, J., Pessler, F. and Klawonn, F. (2014) HUM Calculator and HUM Package
for R: Easy-to-Use Software Tools for Multicategory Receiver Operating Characteristic Analysis. Bioinformatics, 30,
1635-1636. https://doi.org/10.1093/bicinformatics/btu086
[16] Li,J., Gao, M. and D’Agostino, R. (2019) Evaluating Classification Accuracy for Modern Learning Approaches. Statis-
tics in Medicine, 38, 2477-2503. https://doi.org/10.1002/sim.8103

[17] Hu, X.and Yang, J. (2024) G-LASSO/G-SCAD/G-MCP Penalized Trinomial Logit Dynamic Models Predict up Trends,
Sideways Trends and down Trends for Stock Returns. Expert Systems with Applications, 249, Article 123476.

DOI: 10.12677/sa.2026.151016 167 it 5N


https://doi.org/10.12677/sa.2026.151016
https://doi.org/10.2307/1912773
https://doi.org/10.1016/j.eswa.2015.05.013
https://doi.org/10.1016/j.eswa.2021.115716
https://doi.org/10.1016/j.asoc.2020.106205
https://doi.org/10.32604/csse.2022.017685
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1214/12-sts392
https://doi.org/10.1093/biomet/asp020
https://doi.org/10.4310/sii.2009.v2.n3.a10
https://doi.org/10.1214/07-aoas147
https://doi.org/10.1111/biom.12300
https://doi.org/10.1111/j.2517-6161.1995.tb02046.x
https://doi.org/10.1093/bioinformatics/btu086
https://doi.org/10.1002/sim.8103

LIS

https://doi.org/10.1016/j.eswa.2024.123476

[18] Hu, X. and Yang, J. (2024) Group Penalized Multinomial Logit Models and Stock Return Direction Prediction. IEEE
Transactions on Information Theory, 70, 4297-4318. https://doi.org/10.1109/tit.2024.3376751

[19] Vincent, M. and Hansen, N.R. (2014) Sparse Group Lasso and High Dimensional Multinomial Classification. Compu-
tational Statistics & Data Analysis, 71, 771-786. https://doi.org/10.1016/j.csda.2013.06.004

[20] Rifkin, R. and Klautau, A. (2004) In Defense of One-vs-All Classification. Journal of Machine Learning Research, 5,
101-141.

DOI: 10.12677/5a.2026.151016 168 gt 5N A


https://doi.org/10.12677/sa.2026.151016
https://doi.org/10.1016/j.eswa.2024.123476
https://doi.org/10.1109/tit.2024.3376751
https://doi.org/10.1016/j.csda.2013.06.004

	带有双层变量选择的logit模型在股价变动趋势预测中的应用
	摘  要
	关键词
	Application of Logit Models with Bi-Level Variable Selection in Predicting Stock Prices Movement Trends
	Abstract
	Keywords
	1. 引言
	2. 惩罚三项Logit模型
	3. 参数估计与概率估计
	3.1. 坐标梯度下降算法
	3.2. 局部坐标下降算法

	4. 三分类预测性能
	5. 实证分析
	5.1. 数据集
	5.2. 技术指标
	5.3. 超参数选择
	5.4. 模型估计
	5.5. 预测性能

	6. 结论
	参考文献

