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Abstract

Semiconductor quality inspection data exhibits characteristics of high-dimensional redundancy,
class imbalance, and high cost of label acquisition, resulting in limited industrial applicability of
traditional supervised detection methods. In contrast, conventional unsupervised feature selection
methods either ignore the global structure or lack redundancy quantification, making it difficult to
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meet the requirements of high-dimensional and strongly nonlinearly coupled data. To address this
issue, an unsupervised feature selection method named FSSC-DCOR (Feature Selection by Spectral
Clustering and Distance CORrelation coefficient) is proposed for high-dimensional semiconductor
manufacturing data. This method combines three techniques: spectral clustering, distance correlation
coefficient, and greedy strategy. Taking features as clustering objects, it mines the intrinsic correlation
structure of features through spectral clustering to select high-information candidate features, quan-
tifies nonlinear redundancy using a distance correlation coefficient matrix, and finally retains a core
feature subset with low redundancy and high discriminability via the greedy strategy. Without relying
on labeled data, the method can achieve effective dimensionality reduction of high-dimensional data,
adapting to the practical demand of label scarcity in semiconductor scenarios. Experimental results
demonstrate that on the SECOM semiconductor dataset, the performance metrics of the proposed
method are all superior to those of traditional feature selection methods.
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TEABRN G A Bk B . S R R R, R SR R s COR B NS B E R T
FP. WRERMEE SRR T ZSHBEIRE RS, FhREEZERERTEEMLNE R LIRS
KB A1) FREAS IR A SR A P IR AL O IR, R Re A 2 BR T I S 1) A5
et —J7M, B AEARE QA N RERHERE AR (U SECOM . SARKHE S 2 590 4ERHE), =4Edds
HTURER S5 K “HEEIME” , HIBIRI TR 26 R i G B OCIK[2]: 50— 7 1T, 4672 b
ARG i FEA LEA SR (W SECOM 2 SAREHE L IFEA LG 14.07:1), SRAIAT 108 &) 5 Bt
USRI 250, BERTE CAREEERIRAN AR I e R [3]s SO ORER N E,  S AR
HHBR 2 B R R T A MR NAIN BAS 5 I (] A, S B0 by s b bR B KB R, A 24
5 7 LA, X — IR ™ EE I £ 7 (bR 25 A sr W 7 R (A B R R . IS s, SRR T4 5
BRI RS ASEAY (A Gekar I i, G2 A R BRI RS VAL e R R I TR R

702 SR A (R SE bR N 3 e, SRR AR TR E R R, NiZSU B A
RORAR T BEE 7 RSLELA, 4, Nuhu S5E[1]48 W Ah & Edm i 4h & 8 A4 B (SMOTE/BSMOTE-
SVM/ADASYN) 5 F+EIE B (PCA/UFS) (MR 12 WTESE, S 8E WUREEGEDE FrifEfh). 2 LA )iy
(RF/SVCIMLP %5) 52, giaHEmfiZe. HIRREZ IR PN IERe, H0A6 1 S0 i) Je o 7 e e ) 5 a6 B
W, A RREREE e AT AR A I R W EE[2]98 H GA-LightGBM J77%, ik PCA
FEHURFE . SMOTE ABEA-TATEE, BB SE L S5, A REA B0 5 2 25 AL Sl A 4% o
EARER IR 5% R [3]3E 2T K-Means 528 KAL) ek B HLAR AR L (KMUS-RF), 48 250408 Tk
HECGEAMIRAE . bRiEfL). K-Means R ICRFEAE G4, RF 2028, S5 G R EEEMDPY, A
P AR AR = i R R ) DG RV (CT Q) A AR BRI ER 2R R, AL AR S A I 5 2 7= A 4
GOmez-Sirvent 25 [4]#H2 5T 55 2448 2R (ES) ) i B R I 73 FRFAE IR B 75 7%, ST SN 3R R T
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HUERPEARRAE, 38 A R S HL, L5 A HRAE X 53 B 5 43 25 PR A8 S 000 [ R B 5 28053 25 Jiiao 45 [10]
8t U 25 A+ 5 B AL X 4% (10 A6 I 7325, 383k DPConv., GSConv 5 EMA HLii#4 2 SWC-ResEMA-Net,
CEARHEANTT . B IRIEAROCME S Rk BE, R SFIR AT MG EES LR AT 16 IS
PRGN 7%, FEEARIES R A AR OCHE R, MIBRISAE X S TURKHE; 2R IA %5 [12]92 H ReliefF-W i
%, i ReliefF THEAFERCE . FNO A5 S R IERL SR EBE S 70 KGRI CTQs; Lee 45[13]
FRHBARRE 7, PLEM $EFMN G . SMOTE “FA5 ¥, it it MeanDiff B T2 S B ER, 4
A5 M R SRR B D IR IR SRR E I 45 O A B AR R L A I o R R IR 45
AT e MR ¥ B3O 576 Jl e & TR AR I 5 5 R BT

XEEPLA JEAEARERAE 7 1 s N R R IR IR B, (RO IR R BRAE T DA IR
SESTAZORESE, o i T bR SR AT TR AR . TR SR SEBR A P o, ARSI 1) SR R A
R g BN TR N e SRR, SECE SRR AR S KRN S, B
FEBR G T X LA W B TR TG At . SUIRI, ARG T0 i BRIE IR £ 07 V5 (19 Wkl 5% R BE[14]) BA
WHGARZE , ABDOGERHAE R I R, B4 R A5 SRR TUAY: 1 3285 T0 I B HOR [15] B Re 2 48 58
BIELGM, HAREINRENEULGE S, MLLER S m 4. SRR MERMA AR R, P4 S RHER
X A5 TUREHRI R A E .

BeT b, ARSCHR I 1) e T v 4R B 10 T W BHRFIE 1% 4% 7572 FSSC-DCOR (Feature Selec-
tion by Spectral Clustering and Distance CORrelation coefficient), %0 H 52 i&E Bt 2 AR S AR SR A
s ARSI R SR o 12T IR DURIE N S0 R, i i 5R SAZ R R 1B PN 7E DGR 54 I i o i {5
SEAGIERRAE, TR FHBE B A RBUERE R AR R TUAR, RSO RISRFAMRITAR . & X 0 B %G
FHETFHE, J0 R MRS 25 B RT 58 i 4 508 A 35 P 4 . 7E SECOM - SRR 45 b rxf Ll S ii R B,
ZITVE I BE S B AR AR R T AL SRR IR £ 7 1k
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2.1 BB

TR R[16] 2 —Fh 3 BRS040 M 10 0 B 2 ) B, %00 SRR K B SR 3 e 4k B R R
73 ) —— 8 3 o 40 14 AR AL P B (S o MR R ) R AT AR AE 20 A R 20 ), SRR 4B R NS AE S5, PR
LR AR HIF (I K-Means) 58 IR R 2K, BRI T 4e S ™ o010 $ods 802 2 45 M 300 1 R AT 55
TERFEIE SR BT E] XA ISR 2 N .
2.1.1. ERAAEXEN

T B R A Lo R v ) PR v D 45 R AR P R R EE E, SCE LI R

(1) B EmE: BRI ET A v, WEITERIE G =(V, E,W), Hrh:

DOI: 10.12677/5a.2026.152032 33 Givth2 5 R


https://doi.org/10.12677/sa.2026.152032

S

i

V= (W, v, ) AT £ (0 A REA R R
E={(wv, )i ) Joidtets, FEAELRIRTI Y, 5 v, 1E{EKTE:

W =[w, ] MBESEREGERUERE), W, >0 2RI v, 5 v, HABUE(w, = 0 %7 EKTH).

(2) FHAEERE & o &y N

1735 $1(RBF #%, FSSC-DCOR ZHl): w, = exp(—7~||xi —X; ||2)EEP y >0 WEBHL | - x| okt
A x5 x; BIRK B

AR ARALE : DL B BT K AN SR AR TR AL (R B0 0), Bl wy > 0 9 HAL K v, 2 v, [
K-1 4B (B Z.)

(3) KIMIRZ Lo AR E S

RERERE D A SEHE D = diag (d,,dy,ee-,d,) . Forktd, = 3wy T v, HOFFA S LR A
j=1

PR R L AOMERE, SEXNL=D-W , HEAFIEE. MFREMER, HAHEE R
FTEALRL R TR R Dyl S B oA i 22, I A VE AT 5K
XFRMTEAL: Ly, = D YLD Y?; BENLIFEMIEL: L, =D L.

2.1.2. EBAEZOITR

R MAZ RN

PSR ANAEREW « R A B 8 A BEAH ALLRE FE & (1 RBF 4%), 1B A T U B, TE R nxn 4
AR .

TFERE R L« S5 TSR MAEREW THE AR RE D, b 45 20578 5 0 B (SO Ak 5 7 17
)

T R CRAEAE SRR ) B oRAA) . KPR B e BE AT R AR 7, 1S BIRFIEE A, < A, <--- < A, K
JSE [PV RFAIE M) 5 Uy, Uy, oo, U, s JEHCHT K AN S/ INRFAE AR O B AR AIE ) & U, Uy, oo, Uy > 2L nxck 4ERFAEE
FEU (fIR4ERR A ZE1H]).

FHK(K-Means 55): FRHEHFEU MRATHON —/MIRZERE AR, KA K-Means 545 G B FIEXT H T
kK, BRRATRIRE.
2.2. IEEEXRY

H 25 AH 5 R E(dCor) i 7T W A2 & 2 (A FO S M, BEES AR RECH 0 RN R M. WiRT
B /R AR G R A 59 5, BB A O R BT ARG IR AE LR PEAR SR [17] [18]. £l BE B AH ¢ R E TP Bl R (LA
AL n ASLME P L BENL A T X = (X, X, % )~ Y =(Y0 Yoo Yy ) AH):

Q) WHEAZENITTRMIRHEEE 230 X o Y WEEREB A TR Z 40 s .

XX, HiNEE A CENIEE:

a, =||xi —xj" (i,j=12,-,n)
XY, FiINSE jAAUERMEER:
bij :”yi _yJ” (I! J :1121'“!n)

(2) g rp O B B R

X FREEE AR oMb TR EBRAT SSAE R, 15 2O PR B R

XX AR L EES A
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(3) THEAFEAREE B 7 22 1P IR b BE B HERE A 5 B N RIGE AT, RAGERAN®, 158 X 5
Y RREA R B B T ZE T T

dCovi(X,Y)== _Zn:ZnJAuBij

(4) AR H SRR TT T T
AEE X Y 5 SRR T = (B REE T E):
X HIREA R B 75 22 (P J7 »

dVarnz(X):dCovﬁ(X,X)=ni22n“zn:ﬂ§
i=1 j=1
Y HOREASBE B T ZE /)T -
dVvar? (Y)=dCov} (Y,Y):i2 n > B
n"izaja

(5) THEER BIAHG R HL
M X 5Y KRR T 2, UL HIER ) 2R R, 535
AR B AR K R L

. __ dCov, (X,Y)
dCor, (X,Y) JdVar, (X)dvar, (Y)

3. ETERXSEBHEXARN T EEHERFESE

F T 3R 5 55 B B A 5% R B T I B R e 5 5 125 (FSSC-DCORY) PA ST R [19] 42 H FA) TG M B R A e %
AR, X SRR RS . SOURRHE, SINFHETLREENS], @i ik RE A
~ RIERFAENIIE - TUR BRI = HAESE, LB “HRA G R, FRERITR” MAFE Tk, 3
B B e DU AE N B0t G, 35 1 B 2] e 4 A 1) 32 B R AE BEAT 0 4L, PR A A ]
(17 PN TE SR B 45 K 8 B e 1R PN v 5 R R A R AAE s L 00y A P 5 A O SR 00 o 1 A AR ] PR A 2 1T
R, RO RISAIR B 5 O RFE SO TUREAS T BB RRHE, ik 3 B X 4 BE 5 RITT R MM

VSRR
DN R A 72 o0 SRR GE SRS, 75 045 A B SR AT Min-Max drifEfk:

. X; —min(X:yJ—)
ij max(x:’j)_min(x:,j)

A x AE I ARERTESE | MIER R IREUE, X, FORRHAEREREES | 51, X ohniE AL R R -
3.1 #mbEX
BN 1: FFME(F E & (Feature Information Content). FFAEXTEEA S APIRASHIX 2877, KA %€ HIME
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XHRENMRRAER, TR N SR 5 R AR bR, T S B B K RHEE AR AR RAFAE, S
HERFEARM . IE R AR K 1 e e, PR AL 3 2 E R VRS FiAx:

(1) AREZE(std): RARFAEME B HOFRERE, BIBUEME, X B & A B ROIRAS IR X 4 B8 185 5

(2) VUSrhiBa(iqr): X S (E St s s, & T 5 A B e 1 S A

(3) ZiEfabr: METRHEZEMUE 0.4), MUArpE(BLE 0.4). THALEZE X 22 (MAD, #LHE 0.2),
ERES PN

X 2: FHETUARE (Feature Redundancy) . RFES Lk RFAEF 4 (A AL AR SR SR E, R FE B AH
KA (dCon Bk, X FAFAE f, I CIRRFIE T4 Fry » HOURENZIFES Fp, A RE R BORIE S
HSRERE iy max_dCor (f;, Fay ) HHELASA:

max_dCor  f;,Fy ) =max, . dCor(f,f,)

final

Reft, dCor(f,, ) WAHE 1,5 f, HOEE B RAL, B [0,1] : max_dCor(f), Fy ) BOKFRAEAE
5 BRI TS TR P T A

3.2. IEBRAFHES A

WK BRI SR — 8, NG SO R DI BRPE At/ AR IEA s (5 e AR A7) 368 e ik e 2 07 OB 1 £
mfE B ERHEA SRR, — & LA FSSC-DCOR M58 — [ BUZ O fE

DURFIE R RN G, AR AL G REIEAE MR AT 2 X T e R, SRR 7] 22 R £ (RBF) 1 2 R 11 AH AL
JERFE S e R, B ARHRFAE IR AH AU -

2
Sy, =exp(—7||xz,p —x:,q"z)

Rob, y 0L NMERMBH, X, X 0% p. g MEERTIEE, ||, A,

ST 0 O U] — (L 0 B AR L = D2 (D= S)DY2 , 3o D S AL K 1 P e
Dy =S, A L HEAFASAE MR, SR Ky B0 NEF AL SRS Fo B H EER A, ST B AL
BRSPS B RERRAE, LK O AR IE RIS K gy MR C ={C,, Crrrn G |0 B
K e =LK (K 9 FARIHAE THEH0RE), 8 (R B MO TS 2

3.3. ETEERXREHH TR

B Xof 2 A B R HE B TU AR R PR B T3 SRR 5 PR B AH OC R UM R IR % 48 FSSC-DCOR,
JRFEAX RE A HR 2 M SCTER IR B /R b A OC ZR 88, SR A R B AH OC R 2 (dCor) S AL M R AR [R] Y JE L 1t T A, 3
o CRRIURE < BENGRE” OB, SRS ITUARRHE, 550 B PRSI RHE T4 .

FTPRB AN REERE, R ST SRS R IR LR F e AT IUR BB, O FNA “ A4 HAE
5 OEFE TR R R TUREADN T IURBIENRE ” , &ERBREAD K FRIE T8 Fh, . PRI

¥Ithtk: COBSFETFHEF, , =0, BREITKB{H =08;

BPGIEAFE: FAFIER LR |(1,) BT g 1 HORHGE T,

B P =@ ELEE B SR O MR AEIIN Fopy

# Fo D W55 Fyp MEORTUARE max_dCor (£, Fyy ) s 24 max_dCor (f;,Fyy )<z » UK £,
O Fpar s

candidate }
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B ( fj)%jzﬂ’\]%ﬁ, HZE Fp =k
%Hj: %2@#%@]5%% Ffina|
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BN EEIRE X eR™, n NIGHAEAREL d AFHEEG BARRFIETENE K s TTRRME 7 5
BEVHETTE: TIREET AR

fvdy: RPOETEE Fro

1) IR EERHIE T4 Fppy =@ BMFHEERG A R, = {1, o, £y} BORRHESERI K, gigae =1-5K 5

2) XEHEE X BT Min-Max FrAEM ], Kb b5 BN XT e R, @id RBF %4t
TERHEAR AR FE B, SR S SRR EIER Ry, R0 K gngigae T HFFIERR

3) ETE BB E M THE S RHERE N A RHERE B854, s % A
FRFAE, AR BARIERIESR Foanigme (P2 | Foangigse| = Keanaicae )

4) FETIUREETT AR MW F e NITUREEFLE, 8 F, e TRE, ARG RIKIRIGIL: #
Fo 925 M ELB MR EATZ N O MORRASAE, 75 0L 504 BUARAE 5 F,, T4 5 10 8 K T A M
max_dCor ( f;, Fyy ) » X2 max_dCor(f;, Fyy ) <7 BHEZRFEMA Fpy » E§|Fﬁna, =k ;

5) M HFHIE T Fppg o

4, IRERSHHR
4.1. BAEENREA

ALK SECOM - G A %ia 42 [20] (UCH Hlads =7 21 G B A TT R E N IRIE R I, 284 R £
PR BT O RAESS, B 1567 A, AP EAEAR 1463 . ANERFEA 104 4, FEARSES)
Sy ARSI 14.07:1, & T SR A SACT T Tolk Bt 48 - R MPEAS I o 590 SRR o B R M RFAE (8 2
A BT TRZIRE L B0 IR G RAE R S A, 1A MG Ron &, 1 RRAEH).
DRI, AR HEAT SE A6 2 Al i 20 Bl e AT PUAL 2E

B, HAMRA(E . SECOM SR EfRter, S FEAR D JA B LA SRS 1 8, AT
BRI AT T, AR SCAE F 35 (5 378 10 (Mean Completer), Ff— i &5 P 10 B S 7R A1

B, bR . it bR e R (SR ARG S5, AR ST (Min-Max Normalization) %
HARFEARBAT R BN, BT 20 R s

v - X —min(X:vj)
" omax(X,j)-min(X ;)
s x EE T AFEARLES j ML IR IUE, X FORRRAEAERESS j 4, x ARAEAL SRR, HE
P& AE 0 2 1 2 [H],

n, B RIRRR AT REAFAE -1 S 1B 15N 0, fRIE =70 RAn28 1k R K — 2k . SECOM % £&
PRSI 1.

a2

>P

=8 =
HER0H

@

Table 1. Information of the SECOM Dataset
%% 1. SECOM #iE&EE R

B KR FEAHL FEAEHL
SECOM Ve 1567 590
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NYESTHE FSSC-DCOR (3 1% B 5 41 5 A H i Jo M B AR AL vk %) S0 A8 - A4l 4. SECOM
ERAT R, ASCREL 4 SERFIEE I T A xR -

BT IR T M B RHIE 16 (FSSC) [19]: FEAHE RBRHME LIS, @I REX R IES )T,
MR 5 P B T A o 22 0 10 AR R PR ALE 5

Ji 22 {H % (Variance): LL 0.01 Jy77 22 BUE L BEARIX 70 FERFAE, % HARFFIEBOE U 22 i K 4L
T

BEIRAMH R F Hi% (Pearson): THEURFIEE] B /R AEMAASC R KL, L 0.8 N BIMESIBR R TUARRHIE, &R
FI AR B AR O RFAE 5

ERRIP IHTIE(PCA): JET 77 ZE Ml B 32.(95%) 58 FURFE FELE 25 MR 3O0S ARG AL BOAS /2 Wb 78 55 H
#

D

FSSC-DCOR 5% O ZH R B : v IR H RBF #%( y = 0.1), FFAIE TUAR FE f ik FH R 25 AH 5% & 44 (dCor),
TURBIMEBAN 0.8, K KNN (K = 5)fEN4r 3888, 15 N RFAETRE K FARE 22 (std) VE A% O brs 0 ELER
ERIORFR S UG SCERE T SEB— SN S HICE, B IR0 LL A1 .

SEES ARHIE IR B A E AN BE LM T 0% OBl AE &, @k IR B R ECE AR, PR FUAN [F) R AR RS
FEPERE M RE IR s L BEALRPFIE R 35 & 44 3t 10 MPUE AT EE L, @i 2 E LIS R RIS
RARNRE T BC S oy ARV IE A S BEAL R 20 SLB 25 R 0, RBEEER S5 St St . PR 14 R
GURHIEE B SR A% O R i i, R 2 T340 K6 1 % (Macro Precision) %1334 [81 % (Macro Recall) 5 %
S FL 43 #i(Macro FL)E N 7r 8 REA% O B S fabn, ZRFE s ) IE R FEARVERE I i 5 /=, WTH
& BL SECOM - SRR S 1 2 A e, 86 2 BOERFEA VP S5 RN = 3 22 R, did
FRIEHL - FabrE th 4 PIE AL AUC BEAG S FIEE R R E UBIRE B2 T I B AR RE 22 57, TR “ R AR VT
i + BRMEE RN HISUE PR A &, B ORGSR I A T BRI & . & R B b h g AR T

(1) ZoPEREmE

TP YR 2R AR O B — KA RE A T, SEBRJE TR FEAR LU 3548, Hit &N
Wl HRITERA SRR TAEE, T AT 20 RS i 2 B AR T3
FRFE R A

. TP
Precision; =
TP

TR AR A

- 18 -
Macro Precision == " Precision,
i=1

(2) FTP A%
447 BT 6 20 o R TE A0 R o5 6K R AL BB, SRR
BIREAIY “ Tl

B 4 [ 5 2 3
Recall, = TR
TP +FN,
B R A K
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(3) T FL A
P FL MO TR S L T A R AT,
I e SRR R

BRI FL AR
FL = 2x Prec.ls.loni x Recall,
Precision; + Recall,

P FL 9 80A 3

C
Macro F1= iz F1,
c=

SO ERR S EE%,

B AR, CABIRERN RN BB (AT TN C =2): TR A i FEA LA MR A B (B I 8 T PR A K ) 5
FR OV | IV FH PR A LA SR AR R TN 026 1 28); PN, SR | SRIE A PEAE AR (58 i SRR

PRI N HABZR) -
4.3. SKERSH

2 V- YRS R 28 (Macro Precision). %2 -3 73 [a] % (Macro Recall) 5 %2 F- 1 F1

73 #r(Macro F1) /2 {8 1 K

PLRITERS, DURFEANEON x fl, VERESE BARARE Y y Bl 5 TORMRFIEE B T iR P RESE SR T RLAL . WER

I i A AE P IAE SO
Curve, AUC).

EEAHEME vs RTIEHE (FSSC-DCORSIFELFTIE)

N T EE W AL AT IE LSS, THE A 42N T A (Area Under the

0. 65 4

RFIIEHRE
\.
\.

o
o
o

0.50

== FSSC-DCOR (AUC: 13.7109)
=@~ FSSC (AUC: 13.2436)
=@l Variance (AUC: 11.2645)
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Figure 1. Comparison of macro-averaged precision between FSSC-DCOR and comparative algorithms under different num-

bers of selected features
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Figure 2. Comparison of macro-averaged recall between FSSC-DCOR and comparative algorithms under different

numbers of selected features
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Figure 3. Comparison of macro-F1 scores between FSSC-DCOR and comparative algorithms under different numbers

of selected features
3. PEMHEEZEHE T FSSC-DCOR STt E ERI%E F1 S HxTtL

DOI: 10.12677/5a.2026.152032 40

Yeit o 5 B


https://doi.org/10.12677/sa.2026.152032

RET

FH <] 2 A i1, FSSC-DCOR TE 72 ~F- 34 A [8] 3 % B _E 3l AUC (12.0915)7E T A3 Sk b kb F 4515 7K,
BT Variance (11.9751). PCA (12.0160)5 X} bt 5% Bk, ASCATHEMFFIEIL FHI%/E SECOM ¥
SRBEEE ERINER, Pk TSR E LT

H /< 3 AI%1, FSSC-DCOR HiAfEZ: F1 HRE 4 1fiflt T FSSC. Variance. Pearson ¢ PCA Hik:
Il AUC (11.8179) T A Fik i s, RO T A RHESCERL B N LA PERE AL [ FSSC-DCOR )
PEREMMZE AR e, SZRHIEEE AL T4/ T Pearson 555074 .

N T ik AR UE A SR H ) T SR S P B A OC R B T e BV R AIE IR SR AR Y (FSSC-DCOR - i)
7E SECOM - S El 4 LIk MRFIE T4 & 1 B A AL MERE, AT AT B R B, W HE 10 A
[FIFEHLRTIFIFRE 10 OMSLEREs, DL PR HR . 22 P A IR K& 2P FL 58O O Fa i,
RYixt L FSSC-DCOR Hv% 5 HoAth o} PR FE 5 S0V 70 B 4 L S PERER L.

B AR TIEHEN (20 MHE)

0.58 4

0.564 0.5575

052

FHEHE

4 0.50 4

FSSC-DCOR FSSC Variance Pearson PCA

FHIELES®
@)
BFERFIRERENE (30 MFE)

0. 6337

0. 60 4

RTEIREHE

0.50

0.45

FSSC-DCOR FSsC

Variance
FHEEE A%
(b)

DOI: 10.12677/sa.2026.152032 41 il 5N H


https://doi.org/10.12677/sa.2026.152032

B
P
Bl

EBERTEEHESEE (40 MHE)

0.7004

FSSC-DCOR FSSC Variance Pearson PCA

FSERIE
©
BERTIEHENE (50 MFE)

0. 60

0584 0.5786

0.56

o

5

&
L

BTAIEHE

0.50

0. 48 -

0. 46

FSSC-DCOR FSSC Variance Pearson

FHEER 7%

(d)

Figure 4. Performance of macro-averaged precision in the bar chart under a fixed number of selected features
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Figure 5. Performance of macro-averaged recall under a fixed number of selected features
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Figure 6. Performance of macro-F1 scores in the bar chart under a fixed number of selected features
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