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Abstract

With the development of graph neural networks, graph-based collaborative filtering methods have
been widely applied in recommender systems. These methods usually model users and items as nodes
in a bipartite graph and learn high-order collaborative information through multi-layer graph prop-
agation, achieving promising performance in recommendation tasks. However, in real-world sce-
narios, most existing approaches rely solely on the user-item bipartite adjacency matrix, and thus
are still affected by data sparsity and structural noise. On the one hand, user interaction data often
follow a long-tail distribution, where frequent interactions from active users may introduce redun-
dant or noisy information, while users and items with few interactions are difficult to be effectively
enhanced due to limited neighborhood information. On the other hand, traditional bipartite graphs
only model explicit user-item interactions and fail to fully exploit potential relationships among
users or among items. To address these issues, this paper introduces hypergraph modeling to im-
prove the graph structure and proposes a hypergraph-based collaborative signal denoising and
structural enhancement method (HSAAF). The proposed method adopts a two-stage pretraining-
augmentation framework. In the pretraining stage, stable user and item representations are learned
from the original interaction data. In the augmentation stage, user and item hypergraphs are con-
structed to model high-order relationships among users and among items, which are then integrated
into the original graph structure to obtain an enhanced graph with more complete structural infor-
mation and reduced noise. By optimizing the graph structure as a whole, HSAAF can alleviate the
negative impact of noisy interactions from active users and improve the representation quality of
sparse users and long-tail items, thereby enhancing the stability and generalization ability of the
recommendation model in complex scenarios.
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Figure 1. Framework of the HSAAF model
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3. 5Khu
3.1 SCIOHIESR

ASCSEE R Amazon YRR EURESE T ) =AM F4E: Beauty. Toys and Games Al Tools and Home
Improvement, H 45 B a5 1 B,

Table 1. Statistics of the datasets
=1 BIRESITER

Hn e EDAE:i¢ i it AEHAL B
Beauty 22,363 12,101 198,502 0.05%
Toys and Games 19,412 11,924, 167,597 0.07%
Tools and Home Improvement, 16,638 10,217 134,476 0.08%
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LightGCN [8]: — Mg B AR, WIS A2 B4t GCN M ARLNE BOE SRR EAe#e, fREE 2B
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GraphDA [19]: —FflkF B U [FIE 5 £ M SRR O HERAAE L, B (R I0 L A SRR AR R oL 48 — 0
RIS 20 (1 g s SR P 5 A A I R e T AE 2R HH TN 45 - SR PR B s 1 SR VIR 7 3 RN BA
MR AAE S, B8 Top-K R RRER R - B H R BAERE, JFSIAM MR - FP 55
H - T H AR SCPERERE, MDAl He S 4 o

3.4, SEWEER
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Table 2. Comparative performance analysis on the beauty dataset

< 2. Beauty HIHEE LAY BEXTEL 5347

Recall@10 NDCG@10 Recall@20 NDCG@20
NGCF 0.0447 0.0232 0.0724 0.0299
UltraGCN 0.0451 0.0234 0.0728 0.0304
GTN 0.0446 0.0230 0.0680 0.0289
LightGCN 0.0512 0.0273 0.0716 0.0325
GraphDA 0.0514 0.0264 0.0804 0.0336
HSAAF 0.0525 0.0264 0.0812 0.0337

M 2~4 WTLAMEE R, Frid Hif) HSAAF BiRLE = MEF RS HUEE EHRIE B TIE TR
JHERITERE, AR T A S SRz R )1, BRRE, 1E Beauty £tk I, HSAAF 7E
Recall@10 1 Recall@20 f&#x_FAHE: T2k GraphDA 43 3T+ T4 2.1%F1 1.0%. £ Toys #idide

DOI: 10.12677/5a.2026.152037 100 Gt 58


https://doi.org/10.12677/sa.2026.152037

ERIEIE

b, XFATERRISE TR A 0.7%F1 1.0%. 7F Tools $i#i4E b, XWHANTEFR HIHE FHIE 4> ik 3] 1.6%
M 6.5%. 24 KE, HSAAF TEAS[FIEYE /A A A8 BRI O B0dE 45 B RRE T Fa e H— S Ret 3,
KU ZA RGeS A AR AR BT 0 8, IR R A 2RI P AT IR R A& e

Table 3. Comparative performance analysis on the Toys dataset

= 3. Toys iR LRV MERERIEE 4R

Recall@10 NDCG@10 Recall@20 NDCG@20
NGCF 0.0461 0.0251 0.0672 0.0306
UltraGCN 0.0464 0.0250 0.0675 0.0308
GTN 0.0453 0.0248 0.0661 0.0301
LightGCN 0.0471 0.0244 0.0730 0.0309
GraphDA 0.0549 0.0289 0.0795 0.0347
HSAAF 0.0553 0.0297 0.0803 0.0360

Table 4. Comparative performance analysis on the Tools dataset
= 4. Tools BB _ERIMEBEXTLL 347

Recall@10 NDCG@10 Recall@20 NDCG@20
NGCF 0.0329 0.0179 0.0480 0.0216
UltraGCN 0.0331 0.0179 0.0481 0.0217
GTN 0.0337 0.0184 0.0484 0.0221
LightGCN 0.0334 0.0182 0.0482 0.0219
GraphDA 0.0373 0.0205 0.0532 0.0245
HSAAF 0.0379 0.0212 0.0567 0.0259

3.5. jHRESELE

NVl HSAAF fEA R S5R39 )2 20 I RE DTk, ASSCIE T 0000 1 AP i) = SRR R PR i U7 3(ik
TV =M . BAKT S, HSAAF-Base K 414G — 70 BIRBHAERE A EAT ISR, OURBEER R A
- WUHAH R F s HSAAF-UI T8 XA 3545 2 (8 5m A0RRE e A, T 20180 P 485 0 3D s
BriplE(E R HSAAF M — 5 NHI P 5ITH MM REE R, R RABHAERE A) #4711k, L
PIAG 76 B 45 R G B0 MG AT R A ARV RE SR T . =M ARARAE A R I ZRIC &R BEAT X B, L SEIG 25 R 40 3
BT 5T,

Table 5. Ablation experiments on the Beauty dataset

5% 5. Beauty IS _EAYHRRSCLE

Recall@10 NDCG@10 Recall@20 NDCG@20
HSAAF-Base 0.0334 0.0182 0.0482 0.0219
HSAAF-UI 0.0515 0.0256 0.0797 0.0327
HSAAF 0.0525 0.0264 0.0812 0.0337

WA 5~7 HITH ARSI 45 R T DOLEE R, B S R B I 5N, BRI Fa
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EtERE RO R B SUniR TS . BRI, HSAAF-Base (LT JFUGH /7 - T H 448 H45H
BEAT A, AR RE R T IR R EMEZR IR RE 0o FEBLIER B, 51N B 5 A% 3k AL
Ja» HSAAF-UI £ Mabs XIS 73271, R385 30 H 3800w b U RS 2 Be A Rrh 78 SR 4R 22
HAFS, HmRom= T HH R

Table 6. Ablation experiments on the Toys dataset

%< 6. Toys BiB&E LA ERRSCIN

Recall@10 NDCG@10 Recall@20 NDCG@20
HSAAF-Base 0.0471 0.0244 0.0730 0.0309
HSAAF-UI 0.0538 0.0280 0.0771 0.0339
HSAAF 0.0553 0.0297 0.0803 0.0360

Table 7. Ablation experiments on the Tools dataset

5% 7. Tools BiE & L AYERRSCIG

Recall@10 NDCG@10 Recall@20 NDCG@20
HSAAF-Base 0.0334 0.0182 0.0482 0.0219
HSAAF-UI 0.0373 0.0200 0.0536 0.0242
HSAAF 0.0379 0.0212 0.0567 0.0259

B, R PR 02 LR AP S F SR LR, HSAAF 2T SRR
b LSO T MR . R, DA 0 e P A AR B 25 G140
B R (B A S A LRI o T S RO R BE T BIRTIT 2, G
W04 LTE T HSAAF A AURBLIEPE R IO TLAMEIL, (785 D01 T S s ALt
HEHERE 255 P 6

4. R

ASCH GEHERE RS B S M RIERE T R PR IR AL, B T — P Pl O S5 A 3 2 ST HE 2R, %07
VAT ZRBr BeaRAs 1O P 500 H v SR iR A9 kAt A2 LRS- 20 T A st P P e R AN HER I, Jdid
XF P ORIR R AR B, X IR - A AR MR AT RS E G o, AR B S5 SEne B 580
IN=E & ATEAERE, TR T SRR SRR 2.

FESCIRIAIETT T, A FIELAE 2 DVPOHR IR LA TS ) HSAAF J57i% 5 2 Mk il B HEAT 4 L
ARG hr 1 ISR sm R RE AN o (RIS, BE— P Bt TR GBI T Rl SL 08, AR
AR R R R . SR SE R, gt HSAAF BIRE 2 ife s LIS 1€ H &
FHWIVERESRTY, LR 1 2 T 1 10 Q0425 B 49 6 SRS £ W ) 1 98 A 55 v AT 28k 5 e

bR, ARG UE 1R AR 2 P S I B oSS ROT AL, R e
RO SRR SR AT I SR RENS AT MR TR R (R R IX e J) S HERR MR RE, V)R 8Lt — P IR R G 58 5 T RS
TR T HIMERN KBS S
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