应对气候变化:双碳政策下的景观设计与创新 模块化解决方案

欧 阳, 余松林, 赵艾静, 陈泽俊, 朱异凡, 何浩男, 张志浩

湖南城市学院美术与设计学院,湖南 益阳

收稿日期: 2025年10月9日: 录用日期: 2025年11月13日: 发布日期: 2025年11月20日

摘要

气候变化带来的极端天气和系统性环境风险慢慢变成妨碍全球可持续发展进程的主要要素,而"双碳"("碳达峰"与"碳中和")政策是中国承担国际承诺并推进经济社会变革的核心驱动力。本文结合"基于自然的解决方案(NBS)""韧性城市"等理论知识,以可持续规划、模块化技术与碳核算为主要途径,从政策、技术及社区方面入手,将可持续景观设计原则和创新模块化方案结合起来创建宜居人居环境。本文着重研究了模块化单元的LCA方法,给出了碳足迹计算简化案例,并对雨水花园模块等典型设施进行技术集成解析。结果显示景观设计与模块化协同创新可以为城市提供有效的、灵活的、可复制的碳减排和适应气候变化的方式,对于人居生态环境的可持续发展建设具有重要的理论意义和现实意义。

关键词

应对气候变化,景观设计,创新模块化,双碳政策

Addressing Climate Change: Landscape Design and Innovative Modular Solutions Pursuant to the Dual Carbon Policy

Yang Ou, Songlin Yu, Aijing Zhao, Zejun Chen, Yifan Zhu, Haonan He, Zhihao Zhang

School of Fine Arts and Design, Hunan City University, Yiyang Hunan

Received: October 9, 2025; accepted: November 13, 2025; published: November 20, 2025

Abstract

Climate change-induced extreme weather events and systemic environmental risks are increasingly

文章引用: 欧阳, 余松林, 赵艾静, 陈泽俊, 朱异凡, 何浩男, 张志浩. 应对气候变化: 双碳政策下的景观设计与创新模块化解决方案[J]. 可持续发展, 2025, 15(11): 232-241. DOI: 10.12677/sd.2025.1511326

becoming major impediments to global sustainable development. In this context, China's "Dual Carbon" policy—comprising carbon peak and carbon neutrality—serves as a core driver for fulfilling its international commitments and catalyzing profound economic and social transformation. Grounded in theoretical frameworks such as Nature-based Solutions (NBS) and resilient cities, this study employs sustainable planning, modular technology, and carbon accounting as primary pathways. It integrates sustainable landscape design principles with innovative modular solutions across policy, technological, and community dimensions to foster livable human settlements. The research specifically investigates the Lifecycle Assessment (LCA) methodology for modular units, provides a simplified carbon footprint calculation case study, and offers a technical integration analysis of representative facilities such as rainwater garden modules. The findings demonstrate that the synergistic innovation of landscape design and modularization can furnish cities with effective, flexible, and replicable approaches for carbon reduction and climate adaptation, holding significant theoretical and practical implications for the sustainable development of human settlements.

Keywords

Climate Change Response, Landscape Design, Innovative Modular, Dual Carbon Policy

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

"双碳"政策是推动可持续发展,实现碳中和的重要战略。它能否成功关键要看能源、交通、工业等领域创新转型。因此把"双碳"目标放在景观设计发展大的背景中,研究它在景观营造城乡环境中的作用是十分必要的。近些年来,模块化生态设施在气候适应性城市设计里得到不少重视[1],景观碳汇计量方法慢慢由定性评价走向量化建模[2]。另外"基于自然的解决方案"与"韧性城市"理论为相关研究提供了支持[3]。景观设计作为协调城市与自然关系、缓解和适应气候变化、提高社区韧性的重要学科,将其纳入"双碳"政策体系中,创新模块化解决方案,以增强人居环境气候适应性,保证人居环境的可持续性和稳定性。

2. 理论基础: 双碳目标与景观设计的融合

在"双碳"战略下,景观设计角色从单纯的形式美化变成功能整合,"不再只是一种点缀",而成为城市发展与自然生态、碳减排和气候适应共生结构的一部分。这一小节主要是搭建起把双碳目标同景观设计关联起来的理论框架,全面阐释可持续景观设计的原则与碳汇路径,并剖析创新模块化技术在提升气候适应性方面所具有的核心意义及操作优点。

2.1. 可持续景观设计的原则与碳汇路径

可持续景观设计代表一种追求生态、社会与经济综合效益最大化的设计理念,其核心是依靠前瞻性规划与生态化管控,以最小的环境代价实现多重价值,在"双碳"目标的政策语境下,其原则与碳汇功能可归纳为以下三个相互关联的层面:

生态本位的碳汇管理,其关键之处在于借助植被以及土壤来实现固碳增汇的目的,展开来说,应当优先选择乡土及有高气候适应性的植物种类,构建结构稳定且功能健全的近自然群落,这类植物有生命

力顽强、维护成本低的特性,能在养护过程中减少碳排放,还可以借助高效光合作用将大气中的二氧化碳持续封存于生物质与土壤之中。像大规模植树造林与湿地生态修复等项目,可切实提高区域的碳储量以及长期固碳能力,是景观系统达成碳中和最为直接且充满活力的途径[4]。

绿色基础设施的碳减排效应,主要体现在对高碳排"灰色基础设施"进行生态化的替代方面。像以绿色屋顶、垂直绿化以及高性能透水铺装作为代表的绿色基础设施,它的降碳机制是深深扎根于自然的生态机能之中的,比如说,绿色屋顶跟绿墙依靠植物的蒸腾以及遮荫作用,可以对城市热岛效应起到缓解作用,降低建筑制冷所需要的能耗这样就能实现源头碳减排,透水铺装是借助促使雨水在当地进行入渗,补充地下水,从整个系统上减轻市政排水网络的负荷以及随之而来的能源消耗,达成间接减排的效益。

资源循环和气候适应性方面,着重于关键资源水资源的回收再用情况及韧性创建状况,经由雨水花园、生物滞留池等这些生态设施的存在,景观获得了可以自行搜集、净化、存储甚至反复利用水资源的能力,在降低依赖大型供水系统以及由此带来的能耗上发挥了积极作用,并且依靠打造具备弹性特质的小范围(即微循环)体系,在面对极端降水现象如暴雨或长时间干旱等气候事件时能够提升自身承受力从而实现一定程度内在缓冲作用,从资源角度来说为低碳发展方向给予了基本条件支持。

综上可见,可持续景观设计通过"增汇-减排-适应"三位一体的系统运作方式为达成双碳目标提供了一套兼具生态内涵与空间效能的综合解决路径。

2.2. 创新模块化在气候适应中的角色与优势

针对气候变化产生的复杂情况及不确定状况,传统刚性工程由于费用高昂且缺乏相应的适应性能陷入困境,而新的模块化解决方案则依靠其固有的灵活性、可拓展性和迅速部署等特性渐渐变为提升城市气候抵御能力的关键方法。其主要优势体现为三个层面:

全周期成本能控制住并且可以做出高效的响应,模块化单元靠工厂化的标准预制成,使得生产变得标准化、质量有把控力。现场只要做装配就行了,这样的做法简化了物流流程,大幅压缩施工时间,并且真正做到了降低人力花费与总的成本,"即插即用"功能赋予气候适应性设施快速布置的能力,在整个生存阶段表现出更好的经济性和时效性[5]。

系统灵活可逆并动态适应,基础设施可以被按照实际的气候风险来进行弹性调整,这些改变包括扩容、缩减以及功能重建等方面,并且支持城市的空间根据长期的气候模式做出动态应答,它们以较低干预的方式在较低依附下完成建设,在当下防护需要满足时还能给未来土地使用功能变化留下一定余地。

技术集成要兼容还要迭代,模块化单元是标准化技术的承载者,可形成多套高级系统的整合平台。 类似滴灌,土壤感知与太阳能供应能源的模块绿墙就达成了自主管养和能量自给能力,并且可通过部分 模块更换来执行升级,这样就能缩减体系迭代时的门槛及其消耗,从而给科技发展赋予可持续发展的路 径。

综上,创新模块化不再是一种技术,而成为应对气候变化的一种整体性思维。它促使景观基础设施 从静态的、固定的旧有形式向动态反应的具有学习能力并与气候系统互相促进发展的生命系统的转变。

3. 核心策略: 实现双碳目标的路径

在"双碳"目标引领下,景观领域正经历从空间装饰到系统干预的功能转型。要实现这一转变,需要建立一套贯穿规划、设计与管理的实施策略(见表 1)。本研究提出以下三条核心路径:

3.1. 可持续景观规划与绿色基础设施的应用

可持续景观规划是衔接宏观政策和微观实施的重要桥梁,它通过将碳减排、气候适应的目标转换为

空间方案,并为此提供一系列系统性的支持手段。它的关键策略是把绿色基础设施变成城乡生态骨架,在多层立体层面搭建起多个层次多种功能的生态系统网络,来达到传统"灰色基础设施"在功能替代方面的作用。

规划层面,应尊重地域原本生态状况,营造起主要依靠乡土植物、适应气候的植被构成的生态网络,从而增强景观系统的原生稳定性[6]。这种依据地域特色的编织方式,给生物多样性留下生存余地,同时形成可连续固碳的生态基质。

在技术实施上,选取明确带有减碳效果的绿色技术如绿屋顶、垂直绿化等,在提高建筑围护结构热工性能的同时可直接减少建筑制冷能耗;采用雨水管理设施如透水铺装、雨水花园等利用重新建立自然水文循环以减轻市政管网负荷达到水资源再生从而间接节约能源。

Table 1. Strategies for sustainable landscape planning and green infrastructure 表 1. 可持续景观规划与绿色基础设施应用策略分析

策略组件	核心作用	示例参数	效益分析
绿色基础设施网络	缓解热岛效应,改善空气质量,提升碳汇	新增绿色屋顶 50 处	大规模应用可显著降低城市温度,减少 建筑制冷能耗,直接间接减少碳排放。
生态修复项目	增强生态系统健康,	恢复湿地 10	湿地是高效碳汇,其恢复能显著提升生
	固碳,提高气候韧性	公顷	物多样性与洪水调蓄能力。
多利益相关方协作	确保规划的可行性与	汇聚 20 个合作	整合政府、企业、社区与专家力量,是
	可持续性	机构	复杂项目成功实施的关键保障。
本土化与气候适应性设计	提升项目长期存活率	乡土植物使用	显著降低灌溉、施肥需求,减少维护性
	与低维护特性	率 > 90%	碳排放,并确保生态稳定性。

注:本表示例参数为假设性案例数据,其目的在于呈现策略的量化评估方式,而在实际应用过程中,需要依据项目的具体状况加以调整,效益分析的参考来源为《城市绿化碳汇能力评估技术指南》以及相关的实证研究文献。

3.2. 模块化解决方案的创新与技术集成

景观应对气候变化的方式正在发生着改变——从确定性的静态工程应对到不确定性的动态产品体系,这主要将景观元素从一个现场高需求量定制的"工程"升级为在工厂内预制品的一种新型"智能产品",实现了设计施工范式的彻底转变。

从产品方面来讲,创新打造功能专门化的预制单位(模块化绿化墙,装配式防洪堤屏障,光伏一体化 遮阳板等)[7],采用标准化生产确保品质,并直接精简现场工作流程缩减工期,有效防止施工中的环境干 扰与污染。

而在集成上,通过"设计-生产-施工"的紧密配合,一个个模块化的产品就好像可以拼搭起来的"生态乐高",在一个城市复杂的环境里堆积到一起。像一个单元的街头广场就足以将透水铺装、雨水收集利用、土壤传感器和智能照明融合一体,还将水文调控系统、碳减排以及大数据监控都融为一体。

为可具体地阐明其技术内核,接下来以雨水花园模块(见图1)作为例子展开剖析。

尺寸以及结构方面:选择规格为1.0米×1.0米×0.6米。

分层结构具体如图 1,先是种植层,厚度在 20 至 30 厘米之间,接着是沙滤层,厚度为 10 厘米,然后是砾石储水层,厚度处于 15 至 25 厘米的范围,最后通向排水口。

该材料的构成包括再生聚丙烯框架,其再生含量需≥30%,以及透水基质,其中含有 30%的再生骨料,以及本地湿地植物群落。

功能集成方面,存在着这样一种 IoT 监测系统,它可对水位以及水质展开实时监测工作,并且可以自动对溢流和回用情况进行调节。

安装流程依次为,进行场地的平整工作-开展模块的组装操作-实施分层填料的步骤-进行植物的栽种-布设传感器-开展系统调试工作。

注:上述所提及的技术参数属于示意性设计范畴,其设计理念以及材料选择参考了模块化雨洪管理方面的研究成果,同时还参考了低影响开发技术指南。

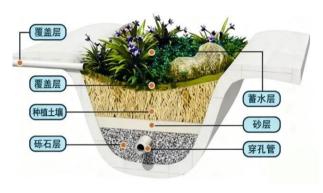


Figure 1. Rainwater garden module 图 1. 雨水花园模块

作为模块化理念的一种延伸形式,接下来的表格呈现出其在面对不同气候挑战之际所有的多样化应用场景以及综合效益,较为系统地呈现出该路径所覆盖的广度与灵活性(见表 2)。

Table 2. Analysis of innovative and applied modular solutions **表 2.** 模块化解决方案的创新与应用分析

创新模块化解决方案	应用领域	示例参数	效益分析
模块化绿墙系统	建筑立面、市政 设施	部署 50 个单元	快速增加城市垂直绿化,改善微气候,隔离 噪音,固碳释氧。
模块化防洪壁垒	滨水区、基础设 施防护	铺设 1000 延米	汛期快速安装,提供即时防洪保护;非汛期 可拆卸,恢复亲水空间,实现弹性用地。
模块化太阳能模块	公共空间、绿色 基础设施	集成 500 块光伏板	为景观照明、传感器网络提供清洁能源,实 现"产消一体"的低碳运营。
政策与市场驱动	技术研发与推广	投入研发资金 100 万美元	政府的资金扶持与标准制定是推动模块化技 术从实验室走向市场的关键动力。

注:表格里的"示例参数"属于假设性的案例数据,其来用来示意不同解决方案的典型应用规模,而具体的数值需要依据实际项目来加以确定,"效益分析"是综合相关领域的研究成果而得出的,其中,模块化绿墙的效益分析参考了 Manso 等人于 2021 年所做的综述研究,模块化防洪壁垒的弹性效益是依据 Zevenbergen 等人在 2020 年的论述,光伏模块的运营数据参考了国际能源署的报告。

3.3. 全生命周期碳排放评估与监测体系

把全生命时段评价(LCA)和碳足印监视系统融合进景观项目,这就是评判"双碳"成绩的核心技术部分[8],这个体系务必把目光从单一的施工建造往外扩,在材料生成、运送、搭建以及运转守护直到拆掉回收这整条链条上。

LCA 属于前端干预手段,在方案设计时就起到决策筛选功能,它凭借对不同材料和工艺碳足迹执行量 化比较来引导设计选材偏向竹木、再生骨料这些低碳本土化材料,同时还能在方案层面推动土方平衡及施工组织优化,这样就在源头上"锁定了"大量可能产生的碳排放。而长线运行中的碳监测系统是后台管理 依据,成为项目运营的"神经中枢",通过设置物联网传感器并配合遥感以及碳汇模型使用,可以达到持续追踪项目碳汇动态情况和项目自身运作中释放出的碳量的效果,把过去粗略估算变成如今精准调控。

为了具体呈现 LCA 的核算思路,本次选择一个模块化绿墙单元作为对象开展简化测算工作,在此背景上考虑该模块采用了再生塑料框架材料、重量 30kg 以及 50km 的运输里程。设计使用寿命为 20 年。

我们可按以下简化公式估算总排放:

GWPtotal = (Emat + Etran + Einst + Euse) - Eseques 其中:

材料生产阶段:

 $Emat = M \times EFmat$

M = 30 kg, EFmat = 1.85 kg $CO_{2-e}/kg \Rightarrow Emat = 55.5 \text{ kg }CO_{2-e}$

运输阶段:

 $Etran = W \times D \times EFtran$

已知 W 等于 0.03 t,D 为 50 km,EFtran 是 0.21 kg $CO_{2-e}/(km \cdot pt)$,借助计算可得 Etran 等于 0.03 乘 以 50 再乘以 0.21,结果为 0.315 kg CO_{2-e} ,约等于 0.3 kg CO_{2-e} ,这里包含了其他能耗修正的情况。

施工安装: Einst = 20 kg CO_{2-e}

运行维护阶段:

假定电力以及灌溉所产生的排放量为 3.5 千克二氧化碳当量每年, 其使用寿命是 20 年。

Euse = $3.5 \times 20 = 70 \text{ kg CO}_{2-e}$

碳汇效益:

Eseques = 1.2 kg $CO_{2-e}/$ 年 × 20 年 = 24 kg CO_{2-e}

于是:

GWPtotal = $(55.5 + 0.3 + 20 + 70) - 24 = 121.8 \text{ kg CO}_{2-e}/$ 单元

注:此为方法演示性计算,清晰呈现 LCA 核算流程,其中关键参数皆引自权威研究与官方指南,再生塑料碳足迹源自 Ito *et al.* (2023),运输因子参考中国生态环境部(2022)文件,碳汇效益依据 Prodanovic *et al.* (2022)的综述做保守估算。实际项目核算要采用精确的本地化数据。

由上个单元尺度核算得出的 LCA 方法论基础应用到完整景观项目中,能够更清楚地识别出各阶段中的碳排"热点"与减排的重点方向,以下通过一个假设综合景观项目为例来说明其全生命周期范围内的碳排放分布(见表 3):

Table 3. Example of carbon emission assessment for a landscape project life cycle **表 3.** 景观项目全生命周期碳排放评估示例

生命周期阶段	碳排放估算 (吨 CO ₂ 当量)	分析与优化策略
材料生产	5000	是碳排放的主要来源。策略:优先选用再生、本土及低碳认证 材料。
运输	3000	与运输距离和方式正相关。策略:优化物流,采购本地材料, 使用清洁能源车辆。

续	₹	Ę
_		

施工建造	6000	涉及机械能耗与现场扰动。策略:采用预制模块化部件,减少 现场湿作业,使用绿色电力。
运营维护	2000	长期但可优化。策略:采用智能灌溉、节能照明,培育低维护 植物群落。
项目全生命周期总量	16,000	减排核心:在前三个阶段通过绿色设计与管理进行源头控制。
碳汇与抵消量	-4800 (进度 30%)	通过植被固碳、可再生能源等方式实现。需持续监测以评估碳 中和进度。

注:本表之中的数据是一个假设的景观项目案例,各个阶段碳排放估算量级参考了上述多项 LCA 研究,目的在于展示碳排分布规律。

4. 实施保障: 多维协同机制

景观设计的低碳转型不仅需要技术方案的创新,更需要建立与之配套的制度保障体系[9]。为确保"双碳"目标下景观设计与模块化解决方案的有效实施,需要构建包含政策规制、市场激励与公众参与的多维协同机制。

4.1. 政策激励与法规框架的构建

要推动景观领域低碳发展就要求打造一个将多种路径结合起来的综合性政策体系,在此之下能创建一种稳定,可预期的制度局面,这一综合性的"强迫-激励-引导"多重路径政策包含三个相互支撑方面的内容:

对于规制性政策而言,最关键之处在于通过立法、标准来明确低碳发展所应具备的底线要求,并将 诸如碳汇容量、透水铺装比例以及雨水径流控制率等关键生态指标融入至城乡规划条例及建筑规范之中, 按照强制性的技术准则予以实施,以此为基础为项目的生态效益奠定条件。

就经济奖励而言,要构建覆盖整个时期的支持体系,可以利用前面的绿色奖金加上税收减免等方式 削减创新成本,并与后面的碳交易机制相结合,把景观中的碳汇放进市场进行价值转换,在这样一套可 持续市场化鼓励体系里。

在引导性政策这层面上,政府应当通过绿色采购与示范项目的方式起到表率效应,在公共项目的选取中率先采用低碳景观技术,在此过程中为新技术赋予重要的应用场所,并可凭借其形成之环境的直观展示去切实提升全社会对低碳理念认知程度及其接纳程度。

4.2. 社区参与与公众教育的推进策略

景观项目所有的生命力,是深深扎根于其与社区社会资本的融合之中的,哪怕是一个设计得极为精巧的项目,如果不可成功激活社区的认同感,无法将这种认同感转化为集体维护行动,那么该项目在长期的气候适应性方面必然会受到较大影响,把公众从原本被动的服务对象,转变成为参与共建、共治的责任主体,这是保障项目可持续发展的关键所在。

贯穿始终的参与机制是社区共识凝聚的根本。当规划设计刚刚起步的时候,像参与式工作坊,方案协调会这些活动就让居民所掌握着的"地方性知识",比如关于本地微气候,用水习惯之类的了解变成设计改良里的关键要素[10],这一过程有助于培育居民的归属感与责任感,为项目长期的运行维护奠定坚实的社会基础。

运营期的景观需要承担起碳中和"活态博物馆"的教育功能,为模块化绿墙、雨水花园等设施配备

解说系统和数据看板,能让抽象的碳汇、水文循环过程变得可视、可读,居民亲自参与植绿、节水等志愿活动时,"双碳"目标会从宏大的政策叙事转化为可体验的日常生活,编织出坚韧的长效运维社会网络。

为可对居民的持续参与给予系统性激励,此项研究提出推行"社区共治积分激励模型",该模型的框架具体如下:

行为认定方面:把参与模块化设施维护的相关具体行动,像清理雨水花园滤层以及报告绿墙传感器故障等,以及节水节电行为以及参与碳汇监测数据收集等这些行动,认定为可获得积分的"绿色行为"。

积分累积方面:要为不同的行为设定恰当合理的积分数值,居民可借助小程序或者实体卡来进行记录以及累积操作。

激励回馈方面:积分可被兑换成社区公共设施的使用时长,也可以换成本地商户消费折扣,还可用来抵扣部分物业费用等有实质意义的奖励。

这个模型把居民的角色从单纯的"旁观者"转变成了"利益相关方"以及"共同管理者",如此一来可有效地解决项目后期维护动力不足这个普遍存在的难题。

4.3. 多学科交叉与合作模式的创新

应对气候变化的复杂性并实现"双碳"目标的系统效益,内在要求打破传统专业的线性壁垒,转向 多学科深度交叉的创新合作模式。

搭建一个贯穿整个流程的协作平台:在项目刚开始的时候就要组建核心团队,把景观设计、建筑工程、环境生态、气候科学以及社会学等多个领域的专家整合起来,借助这个平台,各方的专业知识可在动态交互里共同打造设计方案,保证技术可行性、生态正向性和社会接受性实现有机统一。

这种模式在世界上有成功的先例,比如新加坡的"碧山宏茂桥公园",在这个项目中,水利工程师和园林设计师密切配合,把混凝土排洪渠变成自然河道的滨河公园,他们将工程设施也就是防洪设备、修复生态也就是河岸绿化与社区休闲空间也就是社会活动融为一体,成为展示协同设计怎样达成气候韧性、生物多样性和社会福利共同发展的范本[11]。

5. 挑战与对策

虽然在双碳目标背景之下的景观设计以及模块化解决方案有着较为广阔的前景,可是从理念开始一直到落地的整个过程当中,仍然面临着一系列的现实挑战,主要包含以下这些:

5.1. 技术与集成挑战及其应对

模块化景观在进行推广时,首先会遭遇"物理整合"以及"系统孤岛"这两方面的困境,其中一方面,其安装大多时候会受到有环境的物理方面的限制,比如在旧建筑上集成绿墙时,就要要解决结构安全以及管线迁改这些工程上的难题,而另一方面,更大的妨碍在于怎样去打破景观、建筑、市政等多个系统长期以来形成的技术壁垒,以此来达成数据与控制之间的互联互通。更深层次的矛盾在于,模块化所追求的标准化、通用性,与景观设计本质中对于地方文脉以及生态独特性的回应,存在着一种需要依靠创造性方式进行调和的内在张力。

破解这些难题,有赖于"标准先行"与"数字赋能"的并行策略。

以标准作为先行的准则,其目的在于为那些纷繁复杂的技术产品构建起统一的"语法规则",在此次研究过程中,尝试着去构建一个关于模块化景观产品的认证框架构想(见表 4),借助设定一系列从碳足迹一直到生物多样性增益的性能指标,以此为未来的行业规范打造出一个初步的形态。

数字赋能的情况下,需要把协同设计大幅度提前,在方案阶段就要深度融合 BIM 也就是建筑信息模

型以及 GIS 即地理信息系统等数字化工具,在虚拟空间开展冲突检测和性能模拟,在蓝图阶段消除潜在的技术风险[12]。

Table 4. Green module certification system 表 4. 绿色模块认证体系

指标类别	核心指标	评估标准
生命周期碳排放	≤250 kg CO₂-e/单元(A 级)	基于 Reyhani 2024
材料再生含量	≥30%	循环经济标准
模块互操作性	尺寸与接口标准化	模块体系兼容性
可维护与回收性	可拆卸率 ≥90%	生命周期可回收设计
生物多样性增益	植物层次 ≥3级	生态整合指标

注:此表格呈现的是本研究提出的认证框架构想,该构想中的指标设计理念以及阈值设定,综合参考了国际绿色建筑评价体系、循环经济产品认证以及生命周期评估方法论的核心要求,同时结合景观设计行业的特定需求加以整合与创新,具体阈值是为未来讨论设定一个基准起点,其最终确定依赖于行业数据库的完善以及更广泛的共识。

5.2. 成本与资源限制及其破解

模块化景观的推广目前正遭遇十分严峻的经济性方面的考验,其核心障碍在于初始投资远远高于传统做法,这种情况一方面是因为研发投入与前期投入相互叠加,另一方面则是由于低碳材料供应链还不够成熟,难以形成规模效应,二者直接导致了初始投资过高。

想解决成本窘境,从价值估算与融资途径两方面去寻找突破口就很重要了,用全生命周期的成本效益分析是关键一步,这种手段可以让决策者在长期运行期间低碳景观利用节能、节水甚至减少养护需求所得到的经济收入变得可度量,从而改变他们只关心短期支出的看法;积极探索多种创新金融办法很有必要,在此过程中要结合绿色信贷、EOD模式还有PPP这些工具并把碳汇交易这类政策杠杆激活起来一起努力搭建起能够维持下去的资金扶持架构。

5.3. 法规壁垒与社区接纳的解决方案

模块化的景观想要落地也要越过多道坎,制度层面上的法规对于革新实践做出反应的速度总是很慢,就好像一块地用来搭模块化临时设施的土地性质大半时间都无法确定一样,这样就让这个项目在合乎规矩上遭遇麻烦,在社会方面也是人们会由于不了解新技术而担心它或者保持警惕观望的态度。

面对上述诸多挑战,政策需要拥有充足的弹性,并且可切实有效地构建起社区认同,在政策方面,应当积极推动适应性治理,鼓励地方展开"监管沙盒"试点工作,针对那些不合时宜的条款及时给予修订,为创新留出合法的试错空间,在社会层面,要建立起贯穿项目整个过程的社区参与流程,也就是从方案阶段开始进行意见征集、开展透明沟通,比如借助可视化技术来展示项目效益,再到结合"社区共治积分激励模型"等机制来引导居民参与后续的共治维护。这不单单是技术方案的优化,是培育居民归属感以及主体责任的社会培育进程。

6. 结语

本文深入剖析在"双碳"政策环境下,景观设计以及创新模块化方案携手并行塑造出应对气候变化、推进绿色转型的必要路径。在研究中发现:成体系可持续景观规划确实能够提升碳汇水准、改善微环境气候条件、提升生态承受能力、给低碳发展提供非常关键的空间支撑。而模块化解决方案所具有灵活性

和高效性,可以让城市在面对极端天气时做出及时有效的动态响应,提升适应力……要想最大限度地发挥这个协同作用机制的功能效应还是需要解决许多问题包括如何让技术研发实现整合,要控制成本费用开支多少,还要对相关政策作出规定调整变化甚至吸引更多人群广泛参与到其中等等——这就得依赖各个政府机关机构各类企业主体还有社区大众相互之间紧密结合才行[13]。唯有如此,方能稳步推进碳中和进程,共建可持续、韧性且低碳的人居环境未来。

基金项目

湖南省教育厅科学研究项目(22B0791);湖南省高校思想政治工作精品项目(24JP071),益阳市科技创新计划项目(益财教指[2023] 102 号)。

参考文献

- [1] Li, W., Feng, T. and Timmermans, H. (2021) A Review of Modular Green Infrastructure for Climate-Adaptive Cities: From Theory to Practice. *Journal of Cleaner Production*, **297**, Article 126682.
- [2] Chen, L. and Wang, H. (2022) Quantitative Models for landscape Carbon Sink Assessment: A Systematic Review. *Environmental Modelling & Software*, **148**, Article 105275.
- [3] European Commission (2021) Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners. Publications Office of the European Union.
- [4] IPCC (2022) Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
- [5] Akan, M., Dhavale, D.G. and Sarkis, J. (2023) Greenhouse Gas Emissions in the Construction Sector: An Analysis of Modular Integrated Construction. *Journal of Cleaner Production*, 382, Article 135270.
- [6] Nassauer, J.I. and Opdam, P. (2021) Design as a Tool for Implementing Landscape Ecology in Urban Landscape Planning. Landscape Ecology, 36, 3517-3527.
- [7] Liu, L. and Jensen, M.B. (2023) Modular Rainwater Harvesting Systems: Design, Performance, and Environmental Benefits. *Journal of Environmental Management*, **325**, Article 116465.
- [8] Göswein, V., Krones, J. and Habert, G. (2023) The Carbon Footprint of Urban Green Spaces: A Life Cycle Assessment Approach. *Science of the Total Environment*, **858**, Article 159750.
- [9] Wamsler, C., Wickenberg, B., Hanson, H., Alkan Olsson, J., Stålhammar, S., Björn, H., *et al.* (2020) Environmental and Climate Policy Integration: Targeted Strategies for Overcoming Barriers to Nature-Based Solutions and Climate Change Adaptation. *Journal of Cleaner Production*, **247**, Article 119154. https://doi.org/10.1016/j.jclepro.2019.119154
- [10] Li, W. and Wang, Y. (2022) Community Participation in Nature-Based Solutions: Insights from Urban Green Space Projects in China. Environmental Development, 43, Article 100725.
- [11] Lovell, S.T. and Taylor, J.R. (2020) Supplying Urban Ecosystem Services through Multifunctional Green Infrastructure in the United States: A Decadal Review. *Landscape and Urban Planning*, **203**, Article 103890.
- [12] Huang, B., Wang, X., Kua, H. and Geng, Y. (2020) A Life Cycle Thinking Framework to Mitigate Building Material Environmental Impacts by Integrating Building Information Modeling and Various Life Cycle Assessments. *Journal of Cleaner Production*, 244, Article 118755.
- [13] IPCC (2018) Global Warming of 1.5°C. An IPCC Special Report. An IPCC Special Report. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/sr15/