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Abstract

The supercritical carbon dioxide (sCOz) Brayton cycle has attracted extensive attention due to its
high thermal efficiency and compactness. However, its reliance on pure CO: as working fluid re-
quires operation under high temperature and pressure conditions (critical point: 304.13 K/7.39
MPa), leading to elevated equipment costs and restricted thermal source compatibility. To address
these challenges, this study systematically investigates the synergistic regulation effects of low-con-
centration (0~10 mol%) mixed working fluids (ethane, propane, R116) on thermal efficiency and
peak system pressure of sCO: cycles through thermodynamic modeling and numerical simulations.
The regulatory mechanisms of working fluid critical parameters on cycle performance are eluci-
dated. Results demonstrate that propane achieves optimal trade-off performance under 800 K op-
erating conditions, simultaneously improving thermal efficiency by 2.5% and reducing peak system
pressure by 15.2%. R116 and R125 are respectively recommended for efficiency-prioritized and
pressure-sensitive scenarios. This research provides clear working fluid selection strategies for ef-
ficient and low-carbon operation of sCOz cycles in nuclear energy and solar thermal power genera-
tion applications, thereby expanding the application boundaries of mixed working fluid regulation
technology.
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Table 1. The physicochemical properties, thermal stability, and environmental characteristics of the working fluid

1. TREVIRLE MR, AR E M RIMER T

& =% Pt P A I HE
Y gt
Tc [K] pc [MPa] ts ['C] ODP GWP (100 yr)
N CH3CH3 305.32 4.8722 ~550 0 <1
Pk CH3CH2CH3 369.83 4.247 ~650 0 0.01
COz COz 304.13 7.38 ~2000 0 ~1
N20 N20 309.52 7.245 ~800 0 ~298
R116 CFsCF; 293.03 3.048 ~842 0 ~11,100
R125 CF;CHF» 339.17 3.6177 ~396 0 ~3170
R1234ze(E) CF3CH=CHF 382.5 3.6349 ~170 0 ~4
R1234yf CF3CF=CH> 367.9 3.3822 ~170 0 ~4
R236fa CF3CH2CF3 398.07 3.2 ~380 0 ~8060
R218 CF3CF2CF3 345.02 2.64 ~800 0 ~8600

e, HETHRREMHEHATYIN. BT HAREHIE TN IR (500~800 K),  #Fe e PEAS 2 1) T
(1 R1234ze(E). R1234yf E) bR . 461, KB IRASE TR TRFETIX 70 —REHAEARE IR
R TR AR R236fa), DAUHIRFHIEIR PGS s o) — 8k B A BRI 4 ) 1) T (an
R116.R218), BAEMK RGUISAT R I 5 W& KL K )5, L56F BRI S TR 2 Tk,
Wi EFEZE ODP KMk GWP 45y W B BB m GWP HMERE A RN T R125), WIEREIERN
STHEZRB, & FRIBY L, BAHIE LB TAkE. R116+ R125 K& NoO 1EAMZOIFFERT R o 1KLL TR A1
POIE. IR ASEEAEE R ZE RN, G808 RG0S MRIR A INFIXT CO, Fafith T 5 (1A [F 45/
M, RIRTORE TR “MRMOCR” FRHLH .

22. BEIRERNEE

TEPRFAAE sCOy T i 2 B AR R AR TSR RFPE AT ER T, R GUR SRR FE VR 00X (8 A 1 e P 1 2 1
e, ARSI R RNk PIBE. R1164 R125. NoO) IR 4% B E 7E 0~10% (BE R 43 %) i [
PREAT X EE AT o AR X IR 1 8 R BT AR08 — 71l CA ARk, 78
PRI B R, IR AR Ak R4S COL MR BRI LR, OGS S B A 2%, AT RN
Xof A TR —Fp @A o S—J7 T, AR BRI BTt R 44 5N AT RE 5 R BV TE XU
(U J TR (Rt P A4 RbAE 25 R S KA b 2 Rase PR s ), N4 THE A TR T2 a5 R
GiHAE.

BARI S, WEART 3% A A I FR 18 AT 7E AN B\ S5O = AR (R BT A RS A4 34 Tiks
RN 10%, M EEMFIE “$THHERe” 5 “SINRIER” IR Bt 1 5202 8],
7 388 G, DR 2 o v v 9 0T o 2 AR M R AR AR AR M e R

BT FIRECHEEL B 1 R T ARSI CO JEIR A TR I A S A g . A6 I SR 5
(& 1), FHMMFEI =FARFITA: R125 RIVHEH R ISEER, il FHE R b5 IR ) 38 0
ifi B R116 55 Z e il SR A — @ FEARAERT: Ikt NoO RN FURC LU YE R A, X I S B 1)
SUMIARXS BN . AERFE S 1(b)), BT A INFRI38 REAS R R B M PR TR & TR G S 77, Hork

DOI: 10.12677/se.2025.156011 9 CIERZ 4=


https://doi.org/10.12677/se.2025.156011

B

314

312 =

310 =

308 =

306 =

/K

¢, mix
T

304

302 =

300 =

Lk —— Tk
298 =

R116 R125 N,O

2

296 L
1.00 0.98 0.96 0.94 0.92 0.90
CO, PRI

(a) IGFRE

7.6

74

72

7.0

/ MPa

¢, mix

6.8

6.6

6.4

— Lkt — Wk

- R116 R125 N,O

1.00 0.98 0.96 0.94 0.92 0.90
co, JEIR G

(b) IRFEA

Figure 1. Variation of the critical parameters of five mixtures with the mole fraction of carbon dioxide
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Figure 3. Effect of carbon dioxide mole fraction on the thermal efficiency and peak system pressure of four different hybrid

working fluid cycles (800 K)
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