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Abstract

To address the issue of insufficient day-ahead forecasting accuracy caused by the intermittency and
variability of photovoltaic power generation, this paper proposes a three-stage day-ahead power
forecasting system for photovoltaic power plants: “Benchmark Construction-Fusion Optimisation-
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Spatial Adaptation”. This framework utilises measured data from a 6600 KW photovoltaic power sta-
tion alongside Numerical Weather Prediction (NWP) data: first, a univariate Long Short-Term Memory
(LSTM) benchmark model is constructed to precisely capture temporal dependencies in power output;
subsequently, the CLARANS clustering algorithm classifies scenarios into strong, moderate, and weak
irradiance conditions, while Bi-LSTM integrates multi-source meteorological data to enhance adap-
tation to complex weather patterns; finally, Co-Kriging interpolation is employed to spatially downscale
NWP data, resolving spatial scale mismatch issues. Research demonstrates that this three-stage col-
laborative system significantly outperforms single models in prediction performance: root mean
square error (RMSE) is reduced to 0.0007, coefficient of determination (R?) increases to 0.958, cu-
mulative accuracy improves by 30% over the baseline model, and prediction errors in complex ter-
rain areas decrease by over 20%. Through this spatiotemporal cross-dimensional optimisation strat-
egy, the study effectively enhanced the accuracy and stability of photovoltaic power forecasting. It
validated the feasibility of the “multi-stage optimisation and spatiotemporal coordination” technical
approach, providing crucial technical support for grid integration of renewable energy and the high-
quality development of power systems.
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Figure 1. Subarray power distribution heatmap
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Figure 2. Spearman correlation heatmap
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Figure 3. LSTM neuron diagram
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Figure 4. Training loss curve
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Figure 5. Single-day prediction comparison
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Figure 6. Kendall correlation heatmap
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Figure 7. Radiation intensity clustering distribution
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Figure 10. Kriging interpolation results
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DA FE ) 5. 25 $2 7. MAE M 0.0021 [% % 0.0012, RMSE #:fiti LSTM #5784 B 20%, 8K 2 B B A 7
Dl 22 K a4 ok, AR AL 0 B R A RS L A ) ) Sl JG i

Table 1. Performance comparison of multi-stage models

F 1 SN ERAREMERERTEL

RIS HY MAE RMSE R? HEHZE (%) EH%T (%)
HAil LSTM A7 0.0021 0.0010 0.9241 99.79 100
Bi-LSTM fi &4 5574 0.0012 0.0008 0.945 99.86 100
Co-Kriging [ B s H AR 1Y 0.0009 0.0007 0.958 99.91 100

Co-Kriging B# X FE SR Ab AR HE— 25 i vk 7 NWP Bl 55 0k Rk (9 23 1) RS R DG A 1) /8, KF NWP %
PRI A2 8] 50 PR 25 km x 25 km 32FHE 100 m x 100 m, & 24 M X 35 (1 TR 22 A% 20% LA . ek
PR R2$2TH 2 0.958, HERAZRIL 99.91%, =M Bk RIIBBEAL M AR & LSTM FEUERLRY, RMSE
ZHBRIEIA 30%, SEEL T 4 A B R R T
4.2. BIHRER ELEIE

FF CLARANS HiERIr 1. d. 33 =248 01175, HALER MEIRIESS B 2 Fior.

Table 2. Performance comparison of models under different scenarios
2. ZHEARBIEREXTEL

iR MAE RMSE R? FHRT R ZE S H
G CESLPN)| 0.0008 0.0006 0.967 0.005
RS (2 BIEHK) 0.0010 0.0007 0.952 0.007
S9ERS (ZFIHIR) 0.0013 0.0009 0.931 0.009

SERER S o N RLAURE FE B A, RMSE B85 LSTM BRI AY R AIK 40%, H Nk sl & (R)ik
95%; S9HRE M 7R BIRZERS T HA PSR, (H R BUEREB ARG TT 23%, A R LR SR A IRGR IR
BN IRA R R . = 2RI 55 R EUY KT 0.6, BiEy stk & BLE 5HR 4007 fod o g

5. &g

FEl G AR Lk e L D 26 1 T FROIDAS BB 42 1R S B 75 3K, LASRE 6600 KW 26 AR L ) SEE I 44 5 NWP
GBI AR, WET BT - ZERLE - TRERL” = BIIA R Jeil i Rk
SINTERRRThZEI H A =T AR S R G RUREAE, T DAEAL LSTM BB RS ER I PP Tl B v, 455
CLARANS K7 KA I NWP 2 M2 Bi-LSTM &7, 5 K H Co-Kriging e %5
Ji NWP H58 2 (] B RUBE A0 3, S0 T RN EE AR 1 2 2L

ARG 5% e f 5 00 UF i T FL sl SEBR IS AT R I g, AR Rg e sl ) H R R S, B YA ML fS
(S BRIINCR R AF. R RisfTd P Re s, MTHW “Hgi” ThEREasl. AFEZET R RER
PREHE LR A, R S AR T T B AR G-I A T (R TR0 me L 5, ekl 1 R Dl R T e 22 5 3
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H BER 45

80 FL DR U P TR ORI o SRR, AR RADGR D) Z Hai Bl RMSE [£2 0.0007. R? $2F+%
0.958, %5 5 — B A TS B B iH 32 TH 30%, 2 4% i F [X 3 i TN 14 22 A% 20% LA L

AW FEIAIE T 2 BRI R B G AR Th 2 Tk 3R 7E S B sl o ) S AN B, AR g 5kl . 2
TRE R R & 5 23 (A B ROBE e A4k, BRSCEL T @oks FE R H AT Jilil,  SOERS 1 Hs i SEBRIg T/ oK. iX
— R R T HAN BE B E AT IR Bl IR 12 8 AT IS T 3R T nT 58k, i H AT A SR AL T
FEAE AR S 3 [12], RN N AR e . 259355 FIROCR B R BN T 47 3%, RILT
Z2 AR R TN 7E B B 5 5 X A0k P B S HE A

B
A 13 L TR 95 A K5 2 5 U SR R0 7 W28 T VP o S 8 B S
EETH

VOISR 2= A A Bk I 2t &I 30 H (S202510621072); R #R (S B TA2 K 2# 0 H Ak Il Zx 1 & 15 H
(S202510621072); EHR{E B LR R AR 27 T H (YJIG2024105); HUr AR Y1148 iR B sk =
(20255XQX004).
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