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Abstract

To address the prevalent issues of parameter redundancy, high computational complexity, and low
inference efficiency in existing Transformer-based segmentation networks, this paper proposes a
lightweight medical image segmentation network, L-SwinUNet. The network undergoes synergistic
optimisation across three dimensions: firstly, embedding parameter-free SimAM attention modules
within the encoder-decoder skip connections to adaptively enhance shallow spatial semantic and
boundary-sensitive features; secondly, it employs depthwise separable convolutions within the de-
coder instead of standard convolutions, significantly reducing parameter size and floating-point op-
erations through a separable feature extraction strategy; finally, it introduces the CARAFE content-
aware reorganisation operator during the upsampling stage, which employs an adaptive kernel pre-
diction mechanism to finely reconstruct high-resolution edge details. Experiments on the Synapse
dataset validate the method'’s efficacy. Results demonstrate that compared to the original Swin-UNet,
L-SwinUNet achieves approximately 48% fewer parameters and 40% reduced computational load
while improving Dice and HD95 metrics, proving its lightweight advantages and accuracy potential
in medical image segmentation.
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e 5 EUR o BRI RERIT RGP B OCBERA T, FEREDC A E kiR, &8 B B SOR AT Rk 45
s RTEEROIER . BEEIRE S SIMRE, GBRIFE M 45 (Convolutional Neural Networks, CNN)7E [ 2%
UG BT S S TR [ 1], (4650 CNN J5 ke DRI 3R a3 4n 15 5 4 il R R, T2
SRR A5 5 2 RIESR BN s, HUEREVIZ 2] — @ MRH|. T4k, Transformer 454 58K
MRS 5 N UG - F 40K, Horb Swin Transformer 1§ F 40 )2 45440 5 8 DVER AHLHEI[2], BEARER
TRESHREHFERE, YEASERFMERTHAE . T IZEME) Swin-UNet %N 4aTERER I A
€ 1) Transformer 2244 5% 24 EUZ 7 B 2 — (3],

J$% Transformer-UNet R4 T 1 222 UG Jr FIVERE, (HILAESKBRIE hfim i ST 254 52 2%
FEEAVATE KR, DARHERR M B E RN R . R EUGOE T BA w5 T 2 gy, fi
3 Transformer-based M Z47E I K RGL(UIEIT TPS. #3hilkn &) BRI 2B HI[4]. K, aiflfe
PREFIE RN B2 1) [RGB SRR R, 2 2T B R o BT I B 207 1A .

BExr BRI, BEFREAVRE T 2 MR e, BFERENSEER. BRES. BREl
Transformer B3 DL S SITHZEIREE[5]. SAT, 050 T7iAMO S 4 BT, B9 T TAESCHLMERE ;s 71—
B TTELE AR S EUN R I R B RIARE I T B, Rl RER HIATUKE . N EE WA S 2 R
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fERE 7 T ILVERRIRAG . G, MR —Fh A RmaltE . BEA S K R ) 1 = 2 UG 3 R 28475
HAW TN

Mg FIR e, ASCAE Swin-UNet HEZEEEA 52 R A0 70 FIBR L-SwinUNet. ASHIT 5% (1) 250 56
H& YR E %5 Swin-UNet 5/ IR N /38T : Ymfid#%(Swin Transformer Block)7E 4= =) A5 77 TH R UL 7+, To 753t
ITREAEN: R EE U E A SR A PR BRI R SRR R G RS 1 2 IR B AR ER AR LA
S ERFER BRBRHE L . FE T, RSO =ASSGHEIA TN Swin-UNet BT R, Wit 78451
TE. MR U AYKERE BRI SO T &

%%, NHETt skip connection AFAEFRILAE /), A SCAEBKERIER:H 5] A\ SimAM (Simple Attention Mod-
ule) FZHIERIHLAHI[6]. AFT SE. CBAM 4575 ZAVNSHHIE R I, SimAM # T2kl 228
RIIGE B RB BB R BT ER ST, REAEAMSES LT AT RSN T, RBkERiER
W) S BREAEARAE « JRZFHEE T A5 = 1L FYE B 5 SO AT, (R [R5 S 5 /AR e 1 .
SImAM A8 FE T4 NFFAE B S Gt RFIE 73 BiC HO&E A, ATTIAE skip fusion B BOA MRS A S AL B F-14 |
B RN RS RS R 1PN

HR, NIRRT R, A SCKAES 3 x 3 BRI IR B v] 43 B 45 #(Depthwise Sep-
arable Convolution, DSC), %% &1k RI%2$(DSC-Decoder) [7]. bR GAE MBI R R 5IR KES Y
FLOPs, 1fii DSC #3834 iR NidiE 5 A1 51818 (8] pointwise AN, BETELRIFFRFIL RS B0 W IR I8 28 B
R SAS . R EBUR B @ s, IR ] 2 BB AR 454 TE UG AE R IE e — e R FE S FHBE A ()2 4K,
REJJ, ¥ decoder & T WK & B JREB 414

B, AP ALTE SRR B AT KR RE 7T, AR 3CR A CARAFE (Content-Aware Reassembly
of Features) B 2H F RALBIHACE WL VEFRME 8] 440 LKA T7 % (bilinear B¢ ConvTranspose2d)if i 2 F 2
INERER . KU WSS, 1 CARAFE REIE IS N 5 BN 1 B 1E N FZ RHE AT R Bl B2
SCHUEANS. AR E A, JUHGEH TR B R R A HR AR R R 2 R

HF PR =S, AR L-SwinUNet 7Ef-FF Swin-UNet 4= @ 4wt ae /1 RN, 3%
FRAI 78RS AREE, JRIRT TSI R )1 5/ B 1 BIKSFE . /£ Synapse Fl ACDC ##5: ISk
WY, L-SwinUNet AH# T AR ALTE 80D 2 48% 5115 T2 40% 056 T, 14 Dice 7345
TR HD9S b, kB H R A 5 v 1A 2 5 sE FAME

Zx b, AR TTER AT LLESS PR = A

(1) FRBEBRBGEE TGN SimAM FSHUERE ), H T oM T8 R A 7 )= 25 (R RHE

(2) MEIET IR SRR B, AR EE R,

(3) 7E L RFFBTBCRH CARAFE NS, $Rmi i S /N REES I HE &,

MM —Fh e L Bl ke ARHEER AR I R 2 R 73 BN 2%, O Transformer-based [P %% &
893 TR 2 bR 2 S LT I S5 A DAL JELEG
2. RXFH*E
2.1. BEEMERNG

BN AR TR 2 BB 3 FIAT 55 Hh o SRR B2 A 351 45 R TR R AL G ) I PR AIC I 2 B AR S 8, AT T
— iz AL G AL SwinUNet (4%, HARZERI U] 1 Brs o BAUAT R FH S0 20 1 A s — e 28—k R
BRI PRGN, (HERMERYE . B35 BB PR R @I T 185k

EGRRGESERSy, BT JLARFF UG Swin Transformer Block, DAAERFAFETY S 2 5B 45 MU AE () i BBURR I,
WIRRIZW B R AR IR U 2 S804 . | EETFAE, BEE R N SO s 2 BEAR T, 2%
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B RN THB AR R A . TERGEERL b, CRRR U BUEEMES RUEIR S, i ks B R
(B0 5] 3 =X AR AR 23S

TEMRIS Sy, RSRER R REENEIENR. BAEmE, £ R EWENBERH T
CARAFE HIEMN B FREEH T, HTE LRFEE & IR E AT 7 2545 R (DSConv) LA SE B =) 45 F4 I A B0 R
#. CARAFE BRI SIS RSBl 25 EEM, 1 DSConv it — SRS R S IHERA, (£
15 FRRS AR R R A5 A R IA B0 0 1 R 35 R B B . 2 4 PR R S dm i 2 AR E IR Gl &, SOl
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Figure 1. Improved SwinUNet model network architecture

1. 2R SwinUNet fE R 4R 45

2.2. SimAM FLEFE I

0ot 2 2 B o I 55 G 2 — RS A5 SRR A7 7E I 2 20 TR A1 71 AL 5 R 2 18 SURFIE R & ROR AN
JEH R, A SCIEBRERE RS 42 R 5] N SimAM (Simple Parameter-Free Attention Module)Z 2 ¥+ & /14l
il o AZHLHIYR T 2 R} 24 403k 11 2 [A] $011] BE 18 (Spatial Suppression Theory), SimAM il 2 & VFA5 BN
22 05 HAR I 48 70 2[RI Ze 1 mT 23 14 ke i o L B SRR 2107

BARTE, X THRAREE X eRNCxHxW) THJHFFMZATT 1, SimAM L U0N BE & R HOR &
H AR EE:

Hf =we+b F1 X, =wx, +b, 7 HINEFRHE TG ¢ FIHABPPLE I x_i IR, M=Hx W hiZid
TERIMATCEE, w e b ¢ RN ESWE . B s MOZaeE R, 7T DERBIE B4t
5B um KRR WA S 8. AWHE, R RSy =1y o=-1, FFEIMIE
NI, B2 RE = R AER R N
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ZRERE BB R T w_o A bt WP SRR, 38 S 1 IS AL A T35 94

ok g =ﬁMz'lx,. Mo - ﬁMZ_f(xi Y I E R TN T S . %

JE B [F]—EIE A SR IRMAR R A R BE, P DR REANIHIE BT S — SRR R, A 2
BEARTHSL A . R, HARMRZETT ¢ M/ NRER T fa b :

Horb :ﬁfxi 162 :ﬁf(x,. — ) S T A TE R AR T . R ¢ A, R

AR TURE S B EX 2y, LSS e FER . A RRIE A0 FER A 48 25 A AL -

Hrp EVCE 7 A 2 B 5lE AL R, o Y sigmoid HUE e BUH T IRFIBLETHI[11], OFoR
BIeEIL. SIEBINHMZORAAET: (1) EFHINMEA IS, B T 3E00R: ) i
MR BB S T R SZBeRIe R, AE AR S STE S R AR, A sel AT 10475 (3) [
I 2% R824 [ 5 A A J3E ) = 4EE R B, AH P A% S B TETE 2 7 (0 SE AR B Bl A1V 52 70 AT S5
RIERETT. A 2 PR, SimAM By AR AL AR B R I 78 i 2 1) -5 30 3 4R P88 9 = 43 e B, AT
FEAGINBINS BTG O T SIS G B X I Gl WA i . 8 2 27 R 0 1 AR ER 3 B HT SimAM,
FAIEARIE R SRR RTIR T, B G N A 2 R B POt 7 S 55 5 QB (¥ 88 1) 45 F 3 AN S 4
T, TR SRS, TSR TR &
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Figure 2. Full 3-D weights for attention
2. AR NEZHNE

23. RETSEERNRENRESE

HEARARRLS 2 T R 2R D 0T R, AR SCR IR E W] 4 45 #(Depthwise Separable Convo-
lution) & 5 4 SwinUNet i #% 71 1¥) Swin Transformer Hto R & 7] 4 B B BB bR UE SRR 20 il IR 5 7R
5iZSGBHAANMAPE . X TRNREE, RESRE o AN @ S g A7 23 () 8 -

Gk,l,m = Zki,j,m 'F;(+i—1,l+j—l,m (1)
B Sl I 11 B S AR T S I IE (S B R E
Gk,l,n = ZWm,n ' ék,l,m (2)
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K 3 x 3 IRV 73 BN, THE SRR/ 8~9 fir. H AR LA 3 Frax, REETT 3B AE
IR AR ES R il 9T F“%* BB BG R R R 2% B RN (R A AU RIE R Ik
REJT. XA BT E 2 PR S R 5% nls SR B RIS, e RE 78 0 AR E R IARE V), 1E

AT &IREZ IR R S E 75
Dk%% &

«— N —
(a) Standard Convolution Filters

Dk@ T

“— M —
(b Depthw1se Convolutional Filters

Y A

<« N —

(c) 1x1 Convolutional Filters called Pointwise Convolution
in the context of Depthwise Separable Convolution

Figure 3. The standard convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and pointwise
convolution in (c) to build a depthwise separable filter

E 3. (@ FHRESTUERBRERAME: REEROMBELER(c); NMAZRE R 9 BEIRKER

2.4. CARAFE A& R4 FIEELR R4+

FE S Z AR 5 G AR - RAE SH CE R A1 B i R rpod o (e ] o B B0 R KA A%, HE DA
MRS J i N B G N AR E @ 73, 9 5 O AR B AT (5 B Bk . AR THIR IS B B o AR
FREME R, AN SCAE SwinUNet 525 41 51 N\ P 28RN 4HAIE B ZH AL CARAFE (Content-Aware Reas-
sembly of Features) [9], T #1CJ5H # Patch Expanding I RAEK R,

CARAFE 156101 5 8 g N 2 g b 83 XIS 70 HE R R 1) R 0 b R SCHAT R, I NN HAR B 1
HIE RN I — KN k,, <k, IR, HAEBGERE LR

Wy =y (N (XK eoter ) )

FF N (X, ks ) T DAL L LA 0 R S4B E, () ML BB HRD M % . T 75 0 41
B8 S, P T R4S AT IR AL, b SRRELs AT

X Zn er rW (l’l m) I+n,l+m (5)
ﬁﬁﬂr:[kup/zjo 2 H 2 7 AU BRI R R B RN N R AE I 2 0 A, ARG 5 10 2 X 18 5

AL E S (MR IK fiE
M SRR AT, CARAFE DR F0N SRR S ALERS, 78 51N A 2RI BE 70 (R TR OREF
THBARKIT R L. MRTRERET, RS8R S FLOPs HEZHFL, TiEaR RS L.
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¥ CARAFE W H] - SwinUNet RSB B, A B FAEA B IR R HTIR T, 1R mB s BRI H145
RALTD TN 5 /R A AR DR AL .

3. SE§
3.1. ¥iEs

A ATT ) Synapse £ #3 B IEHS CT Bl SE LB kI . ZE8dE S 30 Min A 515
I CT AR, Rt & 3779 WEHALY)  BUR, 40E) B AR K 8 RIGERARHIS5H: EBhk(Aorta). T
(Spleen). X' i (Kidney) AH#E(Gallbladder). fEfiR(Pancreas). TFiF(Liver) % B (Stomach), %8 E J5H#Ef
R 77, 18 AN TREALIZR, 12 A T Smi, DL TTAl codk 2848 1) 73 B ERE[12] -

3.2. SEIORE

3.2.1. IRFFMSHZE

AHFFLAE Python 3.6 FREE R AT K 5 IZR, RS SIHESLEF PyTorch. SEIGHE (T & K ¥4
# NVIDIA RTX 4090 (24 GB ZAH) I HK GPU lkR%545, FFACE CUDA 11.7.0 ISCREIFAT I IH & . 4
XPNGRniAE, BAREMNT:

(1) ol b FERmS s X REA N ZRAT AT R B s A, BARBENLIE R S50 BMEEE, DUR M AL A
7] 75 (A JEAR B M o BT A i N BB G — 4TI 224 = 224 73343, H. Patch Size [H 24 4.

() WA R BT /E ImageNet 245 Il 215 2 TN S S H0 AT Wl UE AL

(3) A% K SGD fifbds, WM R EEN 0.05, #EK/INN 24, FEREN 09, A%
R PLA AR, TEALAGS S A R T b 5 AR SR 00T, B 1 x 1074,

3.2.2. MERBETNIER
NIFEZG A X 38— S 530 SRR, A SCRA Dice #5155 38 U@ 5 R Bk & 20 25 H b
[13], HEEEAwX14)HR.
L=L+ /ILDice (6)

Ht, Lo, RoRZE IR, Ly, Fon Dice BRI, A RRBLETFHHF .

R PEAL SR Dice L& 3 (Dice Similarity Coefficient, DSC)5 95% Hausdorff i 25 (HD95)FE A E &
P FRFR[14]. Hot, DSC TSR TN 45 R 5 ahrik 2 R E SR, Hog XnXA5)Fs, H
WP 5 G o IR R TIN 4 B 5 B SRS . HD9S & il FL ol SR 2% [l i B FE B, ] U I I T 44

LR, PTEAR P F) A RENS A 2 m AR AL AE PR R B R R IR A R
(N

3.3. sERuSrAh

3.3.1. XFEESCEE

NARGIAEFTHE VA2 88 5 0 BUES P I0AG RUtk, ARSCTE Synapse Hi#fiE b5 2 F il LARERME
SEEAGHAT TR EXT b, SRR TR 1. nTRLWEEE], U-Net 55 Att-UNet /E 930 CNN 2244,
TEELR Y EIVERE LRI, T3 Dice REIHIN 76.85%F1 77.77%, {HXMiff) HD {EHI 5T 36, FH
TE 5 228 B T B SATIAEAE — 58 1R 1 6] . FEF Transformer 22K ) RSOVIT A1 VIT FEALAE 4 J5 E A5 7
B&RS, (i TR Z2IE6E /152, HoFY DSC KT 72%, AR Bk AN A E . M2 T,
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TransUNet 5 SwinUNet J#id @l &8 5 Transformer 454, 784515 LB 5 JaiB 25 [A) A 2 (R EUAS T o
D4, FHorp SwinUNet [f°F34) DSC $27F 2 79.13%, HD FREZE 21.55, B EIRNZ 255 4rHI6E

Table 1. The segmentation result data of different algorithms on the dataset

1. TEEEERREE LN BISEREE

Methoda Average Aorta Leftkidney Rightkidney Gallbladder Pancreas Liver Spleen Stomach
DSCt HDJ

U-Net 76.85 39.70 89.07 77.77 68.60 69.72 53.98 93.43  86.67 75.58
R50 Att-UNet  75.57 36.97 55.92 79.20 72.71 63.91 49.37 93.56 87.19 74.95
R50 ViT 71.29 32.87 73.73 75.80 72.20 55.13 4599  91.51 8199  73.95
Att-UNet 77.77 36.02 89.55 77.98 71.11 63.88 58.04  93.57 8730  75.75
TransUnet ~ 77.48 31.69 87.23 81.87 77.02 63.13 5586  94.08 85.08  75.62
SwinUNet ~ 79.13 21.55 85.47 83.28 79.61 66.53 56.58 9429 90.66  76.60
Ours 79.37 20.19 86.13 83.27 80.10 67.31 5790 94.24 90.51 75.52

Table 2. Comparison of model parameters, FIOPS, and inference time

2. HERISHE . FIOPS, HEIRATE)XTEL Hi1R

Methods Params/M? FLOPs/G TR I (]
U-Net 31.24 55.84 223
Att-UNet 34.88 66.57 235
TransUnet 105.28 24.64 246
SwinUNet 96.34 42.68 238
Ours 50.13 25.61 205

(a)Image (b)groundtruth (c) Ours (d) SwinUnet

Figure 4. Visual comparison of different segmentation algorithms
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TECRIE S BRE BE (W [RI, AR 57 2% o 5 HE B AR R & PR 2 BUE r BSeBr S P R R s R 3R . el |
AN, ARSCTTIEAE Synapse HE S FEUS T 79.37%011°F45 DSC #1 20.19 ¥ HD, {E4rEkE A A —5L
PETTTHE T IA R LU . E— 85630 2 AR EA TR UKL, Frig M S 4E 0 50.13 M,
# SwinUNet i 2% [, [AI FLOPs Hi 42.68 G J&/b 2 25.61 G, HEE I ] 1455 2 205 ms. _LiRZ5RE
B, R AEBROER: R O NE S SimAM VERE ), FETEMRIS I BOR IR B A 2y 54515 CARAFE 2R
FERNE , ASCHFAEA RUEAE SRR ST I R, 3 IREE T BAA g I #IvkRe, BT R
L FRDRS B 5 R AU R o P ] 4 JRoR TR R o B BRI v X L as R, A ST (e HI)AER Fks BEAT
X3 e Btk B0 TS BT (d A1),

g5 LRTIR, BRSO R RN AR R AR Sy BRE FE I Ty, IR AR AR 2 T R
SRINZARE ) SRRENE, FOMIER T HAE R FEB 2T A EUL S RN .

3.3.2. jHEASCLS

IR SO A HOG AT ML RE IR B AR TTRR,  ASCFE Synapse #E4E Bueih 7 #rie U hsess, 4554
W7 3 Pin. LIRSS HREM, LA SwinUNet 66l E5I N SimAM ESHE R )G, HERERE
79.59%, AFRZERERE 19.97 mm, SEEFIDIRD 8%, KE T AE 5 o EORS) 12 AR HE S SR L RE %
TETHOMFE M NS OE R RERIA R &, 0 RARE N SR aEmnesE, S5E
JE4E % 48.32M, {H DSC [EIV& % 77.53%, HD95 bJtZ 23.16 mm, 6B 540 (15 A0 it B S B o k% i
b, HEZ RBERFERL & 5417 K B /e ) EAFE MRS I

5| N CARAFE W2 IRA FRAEBIEG, oA ERefS B 2 4hM2: DSC KE % 79.37%, HD9S &
FEAE 20.19 mm, [FBSEESHEE RS A YEFFE 50.13 M A1 25.61 G. {HEESZIGIER, SimAM
TERT I HETHRFE &, DSConv 7E P SBLRCR LTl , CARAFE 7 J i (R b iy A 2 ks F, A A 1 336
ARG RS BT R ITATEE T A&l Gl &g e

Table 3. Data from the melting experiment

3. IHRLSEIREE REIR

Methods DSCt HD| Params/M FLOPs/G
SwinUNet 79.13 21.55 96.34 42.68
SwinUNet + SimAM 79.59 19.97 88.61 35.56
SwinUNet + SimAM + DSConv 77.53 23.16 48.32 30.12
SwinUNet + SimAM + DSConv + CARAFE 79.37 20.19 50.13 25.61

4. 4518

AR T —M4 N L-SwinUNet FIB2EEZEGHIRE, BEMIFENSHEIRSITER
L E R, St AE R, 554G Swin-UNet ML, L-SwinUNet 7£ S 302 4 K4) 48%. i1 5 &b
21 40%1) [FI,  H: Dice AL R ZUF HD95 (95% Hausdorff FEEN BRI E A . X —HUEsE, Frid i
AL RIS AN RS 5525 RS R SRS RS, T HLRE R I 45 ML SR T RIA B8 ), M 7E PR EFH 2 41
TG BRI RTHE T, SEIUA B H St R Rt

E&WE

A ARLEA T B SR AL BRI FT B (23U R YR L 58 =) I H (21KZS202).
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