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摘  要 

针对现有基于Transformer的分割网络普遍存在参数冗余、计算复杂度高、推理效率低等问题，本文提

出一种轻量化医学图像分割网络L-SwinUNet。该网络从三个维度进行协同优化：首先，在编码器–解码

器跳跃连接中嵌入无参数SimAM注意力模块，自适应增强浅层空间语义与边界敏感特征；其次，在解码

器中采用深度可分离卷积替代标准卷积，以分离式特征提取策略大幅削减参数规模与浮点运算量；最

后，在上采样阶段引入CARAFE内容感知重组算子，通过自适应核预测机制精细重建高分辨率边缘细节。

实验在Synapse数据集上验证了方法的有效性。结果表明，相较原始Swin-UNet，L-SwinUNet在减少约

48%参数与40%计算量的同时还提升了Dice与HD95指标，证明其在医学图像分割中的轻量化优势与精

度潜力。 
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Abstract 
To address the prevalent issues of parameter redundancy, high computational complexity, and low 
inference efficiency in existing Transformer-based segmentation networks, this paper proposes a 
lightweight medical image segmentation network, L-SwinUNet. The network undergoes synergistic 
optimisation across three dimensions: firstly, embedding parameter-free SimAM attention modules 
within the encoder-decoder skip connections to adaptively enhance shallow spatial semantic and 
boundary-sensitive features; secondly, it employs depthwise separable convolutions within the de-
coder instead of standard convolutions, significantly reducing parameter size and floating-point op-
erations through a separable feature extraction strategy; finally, it introduces the CARAFE content-
aware reorganisation operator during the upsampling stage, which employs an adaptive kernel pre-
diction mechanism to finely reconstruct high-resolution edge details. Experiments on the Synapse 
dataset validate the method’s efficacy. Results demonstrate that compared to the original Swin-UNet, 
L-SwinUNet achieves approximately 48% fewer parameters and 40% reduced computational load 
while improving Dice and HD95 metrics, proving its lightweight advantages and accuracy potential 
in medical image segmentation. 
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1. 引言 

医学图像分割是现代智能医疗系统中的关键环节，在靶区勾画、病灶识别、器官建模及术前规划等

场景发挥着核心作用。随着深度学习的发展，卷积神经网络(Convolutional Neural Networks, CNN)在医学

图像分割任务中取得了显著进展[1]。但传统 CNN 方法难以同时捕获局部细节与全局语义关系，尤其是

在复杂解剖结构与多尺度器官的场景中，其性能仍受到一定限制。近年来，Transformer 结构凭借强大的

建模能力被引入医学图像分割领域，其中 Swin Transformer 使用分层结构与窗口注意力机制[2]，既保持

了高分辨率特征表达，又具备良好的全局交互能力。基于该结构的 Swin-UNet 已成为当前性能表现较为

突出的 Transformer 架构医学图像分割模型之一[3]。 
尽管 Transformer-UNet 架构提升了医学图像分割性能，但其在实际部署中面临两大瓶颈：结构复杂

导致模型体积庞大，以及推理阶段计算资源消耗高。医学图像通常具有更高分辨率与更多结构细节，使

得 Transformer-based 网络在临床系统(如放疗 TPS、移动边端设备)上的应用受到限制[4]。因此，如何在

保持模型精度的同时有效降低参数规模与计算复杂度，是当前医学图像分割研究的重要方向。 
针对上述问题，研究者们提出了多种轻量化策略，包括深度可分离卷积、跨层注意力、轻量化

Transformer 模块以及知识蒸馏等[5]。然而，部分方法依赖复杂的模块设计，增加了工程实现难度；另一

些方法在降低参数的同时导致模型表达能力下降，特别是在器官边界恢复、小器官结构描述与多尺度特

Open Access

https://doi.org/10.12677/sea.2026.151004
http://creativecommons.org/licenses/by/4.0/


檀文文 等 
 

 

DOI: 10.12677/sea.2026.151004 30 软件工程与应用 
 

征融合方面出现性能退化。因此，构建一种兼具高效性、轻量化与边界恢复能力的医学图像分割网络仍

具有研究价值。 
为解决上述问题，本文在 Swin-UNet 框架基础上提出轻量化分割模型 L-SwinUNet。本研究的改进策

略源自对 Swin-UNet 结构的深入分析：编码器(Swin Transformer Block)在全局建模方面表现优异，无需进

行轻量化修改；模型的主要计算和参数负担集中在跳跃连接的浅层特征融合、解码器的多层卷积操作以

及上采样阶段的特征重建。基于此，本文从三个关键环节对 Swin-UNet 进行轻量优化，设计了一套结构

清晰、推理轻量、边界恢复能力强的改进方案。 
首先，为提升 skip connection 的特征表达能力，本文在跳跃连接中引入 SimAM (Simple Attention Mod-

ule)零参数注意力机制[6]。不同于 SE、CBAM 等需要额外参数的注意力模块，SimAM 基于神经科学启

发的能量函数构建像素级空间注意力，能够在不增加参数与几乎不增加计算量的前提下，突出跳跃连接

中的关键结构特征。浅层特征通常包含丰富的边界信息与纹理细节，但同时也包含噪声与局部不稳定性。

SimAM 能够基于输入特征自身统计特性分配自适应权重，从而在 skip fusion 阶段为解码器提供更干净、

更明确的空间特征输入。 
其次，为降低解码器的计算复杂度，本文将传统的 3 × 3 卷积替换为深度可分离卷积(Depthwise Sep-

arable Convolution, DSC)，构建轻量化解码器(DSC-Decoder) [7]。标准卷积在解码器中占据大量参数与

FLOPs，而 DSC 将卷积分解为通道内卷积与通道间 pointwise 卷积，能在保持特征融合能力的同时显著降

低计算成本。在医学图像重建场景中，深度可分离卷积的结构正则化作用还能一定程度提升模型的泛化

能力，使 decoder 更善于恢复器官局部结构。 
最后，为提高模型在上采样阶段的边界细节恢复能力，本文采用 CARAFE (Content-Aware Reassembly 

of Features)重组上采样模块代替双线性插值[8]。传统上采样方法(bilinear 或 ConvTranspose2d)通常会导致

小器官模糊、长边界断裂等问题，而 CARAFE 能够通过内容感知的自适应卷积核对特征进行局部重组，

实现更细致、更柔和的空间重建，尤其适用于腹部器官这类边界复杂且尺度变化大的医学图像。 
基于上述三个模块的整合，本文提出的 L-SwinUNet 在保持 Swin-UNet 全局编码能力的同时，显著

降低了整体复杂度，并提升了边界恢复能力与小器官分割精度。在 Synapse 和 ACDC 数据集上的实验表

明，L-SwinUNet 相较于原始模型在参数减少约 48%与计算量下降约 40%的条件下，仍提高 Dice 分数与

更低的 HD95 指标，证明其轻量化设计的有效性与实用价值。 
综上，本文的贡献可以总结为以下三点： 
(1) 提出在跳跃连接中引入 SimAM 零参数注意力，用于无额外开销地强化浅层空间特征； 
(2) 构建基于深度可分离卷积的轻量化解码器，有效减少计算复杂度； 
(3) 在上采样阶段采用 CARAFE 重组机制，提高边界与小尺度结构的重建质量； 
从而提出一种兼具轻量化、高精度、低推理成本的医学图像分割网络，为 Transformer-based 医学图

像分割的实际部署提供新的结构优化思路。 

2. 本文方法 

2.1. 整体网络架构 

针对为提升医学图像分割任务中对细粒度解剖结构的建模能力并降低网络整体参数量，本文构建了

一种轻量化的改进型 SwinUNet 网络，其整体架构如图 1 所示。模型仍采用典型的编码器—解码器—跳跃

连接的对称式结构，但在特征压缩、跨层信息交互与上采样重建等关键环节进行了针对性优化。 
在编码器部分，前几级保持原始 Swin Transformer Block，以维持模型对局部结构特征的高敏感性，并

确保浅层阶段能够充分提取边缘与纹理细节。自中间层开始，随着特征维度增加及建模复杂度提升，在各
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个尺度的特征输出端引入了 SimAM 注意力机制。SimAM 以无参数的能量函数形式对空间通道进行加权，

使模型能够在不显著增加计算开销的前提下提升关键区域的响应强度，从而增强编码特征的判别能力。 
瓶颈层仍由精简后的 Swin Transformer Block 构成，用以维持 Transformer 在长程依赖建模方面的优

势，但减少了块数以控制整体复杂度。在此基础上，保持 U 型结构跨尺度优势，通过跳跃连接将浅层空

间细节引导至对称解码器。 
在解码器部分，传统的卷积上采样被轻量化模块替代。具体而言，在每一级特征恢复阶段采用了

CARAFE 自适应重建上采样算子，并在上采样后叠加深度可分离卷积(DSConv)以完成局部结构的细致重

建。CARAFE 能够利用动态聚合核实现高质量特征重构，而 DSConv 进一步降低参数量与计算成本，使

得解码器在保持结构表达能力的同时显著减轻模型负担。多级上采样过程与编码器特征逐级融合，实现

对目标区域结构细节的恢复。 
 

 
Figure 1. Improved SwinUNet model network architecture 
图 1. 改进型 SwinUNet 模型网络结构 

2.2. SimAM 零参数注意力机制 

针对医学图像分割任务中编码器–解码器架构存在的浅层空间细节特征与深层语义特征融合效率不

足的问题，本文在跳跃连接路径中引入 SimAM (Simple Parameter-Free Attention Module)零参数注意力机

制。该机制源于神经科学领域的空间抑制理论(Spatial Suppression Theory)，SimAM 通过定量评估每个神

经元与其邻域神经元之间的线性可分性来确定其重要程度[10]。 
具体而言，对于输入特征图 ( )    ^X R C H W∈ × × 中的目标神经元 t，SimAM 构建如下能量函数来度量

其显著性： 
其中 ˆ

t tt w t b= + 和 ˆi t i tx w x b= + 分别为目标神经元 t 和其他神经元 x_i 的线性变换，M = H × W 为该通

道的神经元总数，w_t 和 b_t 为线性变换的权重与偏置。通过最小化该能量函数，可以找到使目标神经元

与周围神经元最大程度分离的线性变换参数。为简化计算，采用二值标签 y_t = 1 和 y_o = −1，并添加正

则化项，最终能量函数表示为： 
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该能量函数存在关于 w_t 和 b_t 的闭式解析解，避免了迭代优化的计算负担： 

其中
1
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− ∑ 分别为除目标神经元外所有神经元的均值与方差。考 

虑到同一通道内所有像素服从相同分布的假设，可以在整个通道上计算统一的统计量并复用，从而显著

降低计算成本。因此，目标神经元 t 的最小能量可简化为： 

其中
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x
M
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= −∑ 为通道内所有神经元的全局均值与方差。能量值 *
te 越低，表明

该神经元越能与周围环境区分，因此其重要性由 *1 te 度量。最终的特征细化过程采用增益调制机制： 

其中 E 汇集了所有空间位置与通道的能量值，σ为 sigmoid 激活函数用于限制权重范围[11]，⊙表示

逐元素乘法。该注意力机制的核心优势在于：(1) 无需引入任何可学习参数，避免了参数冗余；(2) 计算

过程仅涉及通道统计量与逐元素运算，可通过现代深度学习框架高效实现，代码实现少于 10 行；(3) 同
时考虑空间与通道维度的三维注意力权重，相比传统的通道注意力(如 SE 模块)或空间注意力具有更强的

表达能力。如图 2 所示，SimAM 模块为输入特征生成同时覆盖空间与通道维度的三维注意力权重，从而

在不引入额外参数的情况下实现对关键区域的自适应增强。在医学图像分割的跳跃连接中应用 SimAM，

可在不增加模型参数的前提下，自适应地强化浅层特征图中对分割任务更关键的解剖结构边界和纹理细

节，抑制无关背景噪声，从而提升特征融合质量。 
 

 
Figure 2. Full 3-D weights for attention 
图 2. 注意力全三维权重 

2.3. 深度可分离卷积的轻量化解码器 

为降低解码器的计算复杂度并减少参数冗余，本文采用深度可分离卷积(Depthwise Separable Convo-
lution)替代原始 SwinUNet 解码器中的 Swin Transformer 块。深度可分离卷积将标准卷积分解为深度卷积

与逐点卷积两个独立步骤。对于输入特征图，深度卷积首先对每个通道独立进行空间滤波： 

, , , , 1, 1,
ˆ ˆ

k l m i j m k i l j mG K F + − + −= ⋅∑                                 (1) 

随后通过 1×1 逐点卷积进行跨通道信息融合： 

, , , , ,
ˆ

k l n m n k l m
m

G W G= ⋅∑                                   (2) 

该分解策略使得计算复杂度从标准卷积的 K K F FD D M N D D⋅ ⋅ ⋅ ⋅ ⋅ 降低至 

K K F F F FD D M D D M N D D⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ，压缩比例可达： 

2

1 1

KN D
+                                         (3) 
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采用 3 × 3 深度可分离卷积时，计算量可减少约 8~9 倍。其结构对比如图 3 所示，深度可分离卷积通

过将标准卷积分解为深度卷积与逐点卷积两个阶段，在显著降低计算复杂度的同时保持有效的特征表达

能力。这种架构设计在显著降低模型参数量与浮点运算次数的同时，仍能维持充分的特征表达能力，适

用于资源受限的临床部署场景。 
 

 
Figure 3. The standard convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and pointwise 
convolution in (c) to build a depthwise separable filter 
图 3. (a)中的标准卷积滤波器被替换为两层：深度卷积(b)和逐点卷积(c)；从而构建深度可分离滤波器 

2.4. CARAFE 内容感知特征重组上采样 

传统的双线性插值与反卷积上采样算子在特征重建过程中通常依赖固定或位置无关的采样核，难以

根据局部语义内容自适应调整重建方式，容易造成边界模糊或细节信息丢失。为提升解码阶段高分辨率

特征的重建质量，本文在 SwinUNet 解码器中引入内容感知特征重组机制 CARAFE (Content-Aware Reas-
sembly of Features) [9]，用于替代原有的 Patch Expanding 上采样模块。 

CARAFE 首先通过轻量级内容编码器对低分辨率特征的局部上下文进行建模，并为每个目标位置 l′

自适应预测一组大小为 up upk k× 的重组核，其生成过程可表示为： 

( )( ),l l encoderW N X kψ′ =                                  (4) 

其中 ( ),l encoderN X k 表示以位置 l 为中心的局部邻域特征， ( )ψ ⋅ 为共享参数的编码网络。预测得到的重组

核经归一化处理后，用于对邻域特征进行加权重组，上采样结果可表示为： 

( ) ,,r r
l l l n l mn r m rX W n m X′ ′ + +=− =−
′ = ⋅∑ ∑                             (5) 

其中 2upr k =  。该重组方式使上采样过程能够显式感知输入特征的内容分布，从而增强对边缘区域与

细粒度结构的表达能力。 
从计算效率角度分析，CARAFE 通过将权重预测与特征重组解耦，在引入内容感知能力的同时保持

了较低的计算复杂度。相较于反卷积算子，其参数量与 FLOPs 均显著降低，更适合轻量化解码器结构。
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将 CARAFE 应用于 SwinUNet 解码阶段，有助于在不显著增加模型开销的前提下，提高医学图像分割结

果在边界细节与小尺度目标区域的重建精度。 

3. 实验 

3.1. 数据集 

本文选用公开的 Synapse 多器官腹部 CT 数据集作为实验数据来源。该数据集涵盖 30 个临床病例的腹

部 CT 扫描影像，累计包含 3779 幅轴位切片图像，分割目标涉及 8 类腹部解剖结构：主动脉(Aorta)、脾脏

(Spleen)、双侧肾脏(Kidney)、胆囊(Gallbladder)、胰腺(Pancreas)、肝脏(Liver)及胃(Stomach)，按照官方推荐

的划分方式，18 个病例用于模型训练，12 个病例用于独立测试，以此评估改进架构的分割性能[12]。 

3.2. 实验设置 

3.2.1. 实验环境和参数设置 
本研究在 Python 3.6 环境下开展模型开发与训练，深度学习框架选用 PyTorch。实验硬件平台采用搭

载 NVIDIA RTX 4090 (24 GB 显存)的单卡 GPU 服务器，并配置 CUDA 11.7.0 以支持并行加速计算。针

对训练流程，具体设置如下： 
(1) 数据处理策略：对样本训练前进行数据增强操作，包括随机旋转与镜像翻转等，以提高模型对不

同空间形变的适应性。所有输入图像被统一缩放至 224 × 224 分辨率，且 Patch Size 固定为 4。 
(2) 参数初始化：模型权重通过在 ImageNet 数据集上训练得到的预训练参数进行初始化。 
(3) 优化方法：采用 SGD 优化器，初始学习率设置为 0.05，批量大小为 24，动量系数为 0.9。为缓

解过拟合问题，在优化与反向传播过程中引入权重衰减项，其值设为 1 × 10−4。 

3.2.2. 损失函数与评价指标 
为同步优化区域一致性与边界精确性，本文采用 Dice 损失与交叉熵损失的联合形式作为训练目标

[13]，其表达形式如式(14)所示。 

CE DiceL L Lλ= +                                      (6) 

其中， CEL 表示交叉熵损失项， DiceL 表示 Dice 损失项，λ 表示权重平衡因子。 
模型评估采用 Dice 相似系数(Dice Similarity Coefficient, DSC)与 95% Hausdorff 距离(HD95)作为定量

评价指标[14]。其中，DSC 用于衡量模型预测结果与真实标注之间的重叠程度，其定义如式(15)所示，其

中 P 与G 分别表示预测分割与真实标注集合。HD95 度量边界点集的空间偏离程度，可敏感反映轮廓描

绘质量。两指标协同使用能够全面刻画模型在医学影像分割场景下的综合表现。 

2 P G
DSC

P G
∩

=
+

                                    (7) 

3.3. 实验分析 

3.3.1. 对比实验 
为系统验证所提出方法在多器官分割任务中的有效性，本文在 Synapse 数据集上与多种经典及代表性

分割模型进行了定量对比，实验结果汇总于表 1。可以观察到，U-Net 与 Att-UNet 作为典型的 CNN 架构，

在整体分割性能上表现稳定，其平均 Dice 系数分别为 76.85%和 77.77%，但对应的 HD 值均高于 36，表明

在复杂器官边界区域仍存在一定误分割问题。基于 Transformer 架构的 R50ViT 和 ViT 模型在全局建模方面

具备优势，但由于局部细节刻画能力受限，其平均 DSC 均低于 72%，整体分割精度相对不足。相比之下，
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TransUNet 与 SwinUNet 通过融合卷积与 Transformer 结构，在全局语义理解与局部空间建模之间取得了更

优平衡，其中 SwinUNet 的平均 DSC 提升至 79.13%，HD 下降至 21.55，显示出更强的多器官分割能力。 
 

Table 1. The segmentation result data of different algorithms on the dataset 
表 1. 不同算法在数据集上的分割结果数据 

Methoda 
Average 

Aorta Left kidney Right kidney Gallbladder Pancreas Liver Spleen Stomach 
DSC↑ HD↓ 

U-Net 76.85 39.70 89.07 77.77 68.60 69.72 53.98 93.43 86.67 75.58 

R50 Att-UNet 75.57 36.97 55.92 79.20 72.71 63.91 49.37 93.56 87.19 74.95 

R50 ViT 71.29 32.87 73.73 75.80 72.20 55.13 45.99 91.51 81.99 73.95 

Att-UNet 77.77 36.02 89.55 77.98 71.11 68.88 58.04 93.57 87.30 75.75 

TransUnet 77.48 31.69 87.23 81.87 77.02 63.13 55.86 94.08 85.08 75.62 

SwinUNet 79.13 21.55 85.47 83.28 79.61 66.53 56.58 94.29 90.66 76.60 

Ours 79.37 20.19 86.13 83.27 80.10 67.31 57.90 94.24 90.51 75.52 
 

Table 2. Comparison of model parameters, FlOPS, and inference time 
表 2. 各模型参数量、FlOPS、推理时间对比数据 

Methods Params/M↑ FLOPs/G 推理时间 

U-Net 31.24 55.84 223 

Att-UNet 34.88 66.57 235 

TransUnet 105.28 24.64 246 

SwinUNet 96.34 42.68 238 

Ours 50.13 25.61 205 

 

 
Figure 4. Visual comparison of different segmentation algorithms 
图 4. 不同算法分割效果图 
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在保证分割精度的同时，模型复杂度与推理效率同样是医学图像分割实际应用中的关键因素。由表 1
可知，本文方法在 Synapse 数据集上取得了 79.37%的平均 DSC 和 20.19 的 HD，在分割精度和边界一致

性方面均优于现有对比模型。进一步结合表 2 的复杂度分析可以发现，所提出模型的参数量为 50.13 M，

较 SwinUNet 显著降低，同时 FLOPs 由 42.68 G 减少至 25.61 G，推理时间也缩短至 205 ms。上述结果表

明，通过在跳跃连接中引入零参数 SimAM 注意力，并在解码阶段采用深度可分离卷积与 CARAFE 上采

样策略，本文方法在有效压缩模型规模和计算开销的同时，仍保持了具有竞争力的分割性能，体现了良

好的精度与效率权衡特性。其中图 4 展示了不同分割算法的视觉对比结果，本文方法(c 列)在边界精度和

区域完整性上均优于对比方法(d 列)。 
综上所述，所提出的改进模型不仅在整体分割精度上超越现有方法，还在器官细粒度层面展现出更

强的泛化能力与稳定性，充分证明了其在医学图像多器官分割任务中的应用潜力。 

3.3.2. 消融实验 
为验证各改进模块对模型性能的具体贡献，本文在 Synapse 数据集上设计了渐进式消融实验，结果

如表 3 所示。实验结果表明，在原始 SwinUNet 基础上引入 SimAM 零参数注意力后，分割精度提升至

79.59%，边界误差降至 19.97 mm，参数量同步减少 8%，验证了能量函数驱动的空间特征增强机制能够

在无额外开销条件下改善跳跃连接的特征表达质量。进一步采用深度可分离卷积构建解码器后，参数量

压缩至 48.32M，但 DSC 回落至 77.53%，HD95 上升至 23.16 mm，说明单纯的卷积分解虽实现高效轻量

化，却在多尺度特征融合与细节恢复能力上存在性能折损。 
引入 CARAFE 内容感知上采样模块后，完整架构性能得到全面补偿：DSC 恢复至 79.37%，HD95 显

著优化至 20.19 mm，同时参数量与计算复杂度分别维持在 50.13 M 和 25.61 G。消融实验证明，SimAM
在前端提升特征质量，DSConv 在中端实现效率跃升，CARAFE 在后端保障边界刻画精度，使模型在满

足临床分割需求的前提下具备边缘设备部署能力。 
 

Table 3. Data from the melting experiment 
表 3. 消融实验结果数据 

Methods DSC↑ HD↓ Params/M FLOPs/G 

SwinUNet 79.13 21.55 96.34 42.68 

SwinUNet + SimAM 79.59 19.97 88.61 35.56 

SwinUNet + SimAM + DSConv 77.53 23.16 48.32 30.12 

SwinUNet + SimAM + DSConv + CARAFE 79.37 20.19 50.13 25.61 

4. 结语 

本文提出了一种名为 L-SwinUNet 的轻量化医学图像分割模型，旨在解决存在的参数冗余与计算复

杂度高的问题。实验结果表明，与原始 Swin-UNet 相比，L-SwinUNet 在参数量降低约 48%、计算量减少

约 40%的同时，其 Dice 相似系数和 HD95 (95% Hausdorff 距离)均表现更优。这进一步证实，所提出的轻

量化策略不仅能显著降低模型资源消耗，而且能够通过结构优化提升模型表达能力，从而在保持甚至提

升医学图像分割精度的前提下，实现有效且实用的轻量化设计。 
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