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Abstract

Accurate and rapid detection of distracted driving behavior is critical to improving road safety and
preventing traffic accidents. Based on the characteristics of drivers’ distracted driving behavior, an
improved YOLOv8n distracted driving behavior detection algorithm is proposed. Firstly, a simple
attention mechanism (SimAM) is introduced to self-normalize each feature map, emphasizing the
feature maps with valuable information and suppressing the interference of redundant information
in complex background. Secondly, in order to improve the detection performance of small target
objects, a small target detection layer is added, so that the model can detect and locate smaller
targets more accurately, and improve the stability and robustness of the target detection system in
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complex scenes. Finally, the accuracy of the model is improved by 4.2% on the published and
collected data sets. The accuracy of distracted driving detection reached 90.4% respectively, which
verified the excellent performance of the proposed model in detecting distracted driving and re-
ducing accident risk during assisted driving.
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Figure 1. Structure diagram of YOLOvVSn [11]
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Table 1. Comparison of different attention mechanisms
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Figure 2. SimAM attention structure [ 18]
& 2. SimAM JEE L5 18]

SimAM SAE S R T BT DAL . AERP Rl AUk, (5S4 E A Aol L
55 A A 22 oA [ AR TR R e e At SR R 22 TR A 2 4l A B A e 200, IV AE 2 A o) B
PRl LA A SRt ) 2 (A 2 e AR BT S K B . SimAM SRl I A B 48 T (RN 2

A PERARG B B T0, AT RE SCUA BB BR 2

n 1 A
et(wtabmyaxi):(yt_t)2+M_1 (yO_xi)2 (1)
i=1
fzwtxt+bt (2)
X, =W, xx; +b, 3

Horb, ¢ ORI NRHEAE R P — T8 1) HARP T, x, R IZEIE T A e g TT, MR ZIETE P
TCEECE, § ONREGEEE RS, TRRT ¢ RN, X RKT x, AR, w, R AL
H, b RAMEARAMED . AXD)PREREBLEE, pAET o, Bkt y,= 7 Hy= %1, 2
RO)IE B ME, TRMEAROREERE] T F—MEE S B 2I0 « MIEARRR e gk nT 4
XF yo B yo BEAT ZHERIFIE (-1 A 1), FEARX)HSINIENT, RN G SRR REX DT,

et:mZ(—l—ﬁi) +(A-1)" +Aw; “)
Hig b, fMEE EMREEREEE M A QR SGD SFIAUSIORRME, M AT R 2 HE
fr. EiEf)E, AT w, A b FENTAE, A G2 (6)FR .

W o=— 2(t_/'lt) (5)

t (t—,ut)2+2x0't2+2><l

b, =—%(t+,u,)><w, Q)

S, g R FAREBRRETE ¢ 2 NS T TSN, o 2 AR BR AT ¢ 2 A LR 2%
T, I ARDT:
=3 ™)

i=1

o = 2 ®

M
o F A2 @RI EIE LSRG RIMFITAR, I Yang S A BEA 7 — SR

DOI: 10.12677/sea.2026.151005 41 B TR SR


https://doi.org/10.12677/sea.2026.151005

PR, X LA

B, BMERAERANEIE S, REMEREIRAME A TR MRS, AT B Z0ETE A e

Jokan B B S E AN TS 7 o e XA T 30T DU 71238 3E E R P M e s A, ROy et =

AR RS, XA Bl 5 R B e S B g2 AR PSS P9 45 2o [RIRN T DA L PR AR AR S AT 5

TAMME B p Mo, BEMPERTBEARIEE. 5E, S ERNIHERE, XXM THR:
4><(c§2 +/'L)

‘T U=y 12x6° +2xA @
Hrp g A EE P FTE AT FE, &2 RBANEIETE AT %, HEARWT:
fmar 3 (10)
6 —if(x ~ay (11)
YA H

AROVE, SR TE ¢ (AR, WETE ¢ 5 I R TE 2 (R L e, 7ERURE AL
SRR TS ¢ BV E MR . (R, & R TER B T LU 1 e 78] S, 2
SImAM F £ 7 HUB SRS HORFIE T 1 3 b st (12) e

~ . . 1
<X—sgmmd(E]®Xf (12)

X MHNAERE, & AR M . E AT ¢ s . O ABUES., AR
E (L AR, T3 sigmoid BRHCKIRH £ .

FLRKE, SImAM FFERER, JEHEN A WA E A B, LS LA M TR R, %
OIHCE SRR . LI, SimAM P EHUBIZE AR S BSN S RO LR A i 2 P R T o S
S B, AATEORSRRRL . OIS P14 £ gt 3 .

BackBone

BackBone

Figure 3. Comparison of the structure of the Backbone network before and after improvement
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Figure 4. Small object detection layer network

& 4. NEFRENEMLE

40*40*512

K, i 7E Head #70 BEATHM AT, /N HARIVRRIEAS B 45 DU 25 0 1% 8 28 A = R RIAFIE 2

DOI: 10.12677/sea.2026.151005 43 B TR SR


https://doi.org/10.12677/sea.2026.151005

PR, X LA

M3 558 0 2 AR AE R A BE 70 S/ FAR IR E R P o (RIS, STNERAM AR SR T 47 K06 25 558 53 73
OAT ARSI, 5340, I TN B ARk, TSR B HE AR R, AT B AR E
PEAIRZE o R TURG 5 LAY Bl R LAt , S 1 2% B DI ikt AR 50 25 Bk 52 P 20004 A

2.2.3. i Loss sk /i ¥
T FRE RN A R4 K R 50CE B BmAer U by TSGR A €0, L R I8 SOK 35 SR THBORME R . /£ YOLOVS
H, KA T CloU fERA FHERNAH R R AL, ELRG %8 T IS BOHEMKSELL . o SR A E S
AR, MTHE S 1 EEE AR HEra e, 5 Fros. 28T, 5T/ MR AR ARy AE R [, CloU
e — € R R . MR RIX— 8, $2H T (Focal Efficient Intersection over Union, Focal EIOU) v1, 1H
H T HESREEIHI(EM), RAHKEIERE FM 133% 71, Bk, R7esI N 7 BRI R EN
il WIoU 45 2k B BOR IR AL . 3l ShASAE S RN, K ToU B BB EEORVEAL B AE o &, DA
855 UAAT DRI BN AR AR PR FE AR, RN R AL N R T T0, AT BG s AR AL Rz Ak Re /. B
dezl—hﬂjzl—fzfﬁ (13)

u

[’WIoU = Ryiou ‘CIOU (14)

(x_ng)2+(y_ygt)2
(w;+ 1)

(15)

Ryow = exp[
O, Wy Rl H AR TN AE N B S (1) di /NS M RE IR 56 FE AT 1 B, T 7 R0 H D)5 oA AR B SEHE AH 2E X
W T8 ERT =, S, R TROIAE RN B SEAE OB A X 38, N 1 S WloU ;=2 FRAS U S ITIBE B, W, Al H 1

T BHOR(EAR* R B o XA B A RO RR 7 BRI R, B/ SIAMIEE R, iR
Po [AlBE, SXFEAR T CloU 4515k b Hh K 95 HOGS R BB 2 -

—

(XY,

H H.
g 1

(x.y)

=
w
| : |

Figure 5. Schematic diagram of predicted bounding boxes and ground truth bounding boxes
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Figure 7. Comparison of network loss functions
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