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Abstract

Financial distress prediction (FDP) serves as an important tool for preventing systemic financial risks
and improving capital allocation efficiency. However, in real-world corporate data, the proportion of
distressed samples (e.g., Special Treatment “ST” firms) is extremely low, which often leads models to
be dominated by majority-class samples, resulting in identification imbalance and boundary bias. To
address this challenge, this study systematically investigates financial distress early warning models
based on integrated under-sampling, aiming to enhance the model’s ability to identify minority-
class firms and its robustness across different time windows through sample rebalancing strategies.
Based on financial data of China’s A-share listed companies from 2010 to 2022, this paper constructs
a comprehensive indicator system covering dimensions such as solvency, profitability, growth, and
operational efficiency. Four prediction windows (T-1 to T-4) are set to examine the impact of time
span on model performance. Using decision trees as the base learner, this study compares and ana-
lyzes the classification performance of traditional under-sampling methods (ENN, Tomek Link,
NearMiss) and integrated under-sampling methods (RUSBoost, EasyEnsemble, HUE). Empirical re-
sults show that while traditional under-sampling can partially improve the identification rate of
minority classes in short-term windows, its overall performance declines significantly over longer
time horizons. In contrast, integrated under-sampling methods demonstrate superior performance
in terms of recognition capability, classification balance, and cross-period stability. Among them,
the HUE model achieves optimal performance in G-mean, AUC, and other metrics under the T-1 win-
dow, and maintains high robustness in medium- to long-term windows. The robustness of HUE and
EasyEnsemble is further validated by Friedman significance tests. The research findings indicate
that integrated under-sampling strategies can significantly enhance the identification ability and
predictive stability of financial distress prediction under highly imbalanced conditions. This study
provides verifiable empirical evidence for imbalanced learning in complex financial scenarios and
offers valuable references for regulators and investors in constructing more forward-looking risk
early warning systems.
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iV 45 PRI T A Sy A W IR S il XU B 0 B LA G 4y, R AR T ke . Rk R
AT B 5 R 8 3 B (I S BENL  JEAER, ZEMATF AR JtEdam .. 5 5591 7t
DA G MR A R IRAL A1 R R BT 7R 0 45 R 58 Al SO IR0 ] SR RS 55T 128
M E T AT P RE TR AR . 5 B B P A 55 TR ASE Y, 5K 97 91 2R 90 1A 4 IR R T X
e A B R SIS E . Fralrse, RET T, SRR ER(ST)LSIE R b 2w 5%
S EERRN, SRR S B E) FibsE 2 —[1][2]. Hk, BL“ST” FHE1E R 45 8 e 4%
P ORI AR [E 9 FE I AR

A 5% RIS TR A 22 177 7 NG HAR A ) AL 2 ) B i 3 Sl o) SR B % )k il R . &
JLHF 5T 4N Fitzpatrick (1932) [3]+ Ohlson (1980) [41285E 1 Gttt I LA, (FAE LA 5 2% S 1t 0 55 Hidis
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BEJG, CREAENL. AWML, RSN kR B A [5]. T8k, BENLARMR. BEEETR
F+. CatBoost. Stacking &F4E 5 I HEALHE— D4 T+ T LRI A e 77 5 T AR e 14 [6] [7], RS Rl
25 55 i 24 T f) B A AR B 2R

JUETTEAWHEE, AL 55 RS TUEAT TG — A 2 R ARSI A P —— R B Al
A (U ST FEAR) B E DT IEH A . X FA P 3 B A ) 280K, RS R 2 TR AR
AT RIEAS E FI[8]. AMRUGZIA, WS PR AU ) SRR E R UMD
B S0 1 B0 AR AR R BRI A KU [0 (HEORAER AR AT, (R BRI 5P A AE S
PR e 5 Z HUURK R [ 10] -

FHECZ TR, B0 B R AL S R R R T O . S @ O M 5 vl AR I, O AN AT 2 ST I E 5 )
ERFER RN SMOTE J H etk 7 k18IS & il D B A 8 o A [11] . SIbERS, JROCRFE S i
IEPPE R R Z ARG URE B S RIL BN, W NearMiss. ENN. FEEICRFE L% HIE MK
FHE12] SRR S5 4 1R FAE 71900 EasyEnsemble [13]4%, #t— TR 8 Mk 5/ B3R I Ag

SR, R E SRR AR AW, DU B FELE Al W 25 TR 53 T AT AT 2 A E B AN 2 . — 7T, AH
KWL STIAE SMOTE SRl RAETT I b, R ICRAE SIS I RGP ARG IR, S BN F R
MLHITE SR 5 s P PR 5 8UR B Z R0 53— 07T, MRTHE S T AR B R CRFE VAR = 4
S U VERAE T B AL S5 B T IR I R M ARG — S5k . HULEIRE, xR E SRR 1
ST il £ 50 55 RBSARFIE TS 5t T B CRAE SRR FUURARXT BE =, M LA AR el s 85 Al JRURG  BRL A At
R PR SRS % .

A ST X0 AN ST 1] R R SRS SR S Bl 10 b I 5% DR 5 T8 (1 S B 7 SR R 9. BT 5, AR SCidid
ARG S5 L2 I RORFES L L LR LA, S — I SLIRVTINHESS, JR4s &2 Mplees ) 5EX
FERRURT M e R I AT A TS . [FIB, JET AR BT AR REART R SEUE /b, SRS [F) KR 7 2
TER S AR e P . BEERR e e S T 2 S B T 22 R, FRadk— 20 70 Hr FLAE S o JRURG: T
LA AT S0 . AT B SR TR B At RGN SHIERIE 5775w 5%, hE
A M VA 55 PR S5 U () STORBR AR A 7T, FF 9 I T 1 AN i LA R R . AR FLELA W] AR A 11 XU 1
Ak R HERN SR

2. EXEBRE5E
2.1. EasyEnsemble

EasyEnsemble 1.0 AR E1 3 RBEROR, M MORREATI A A THE, 454 T4 15 0%
AT TSR . FC ARSI AR F
BRI A 2 MR RO N,y BRSO N,y ST N OB, s A
DRSS (1) M BB HLINR Ny, MR GRVE T ATIIRD): (2) HHMIRE & MOk R S5 2
HORRAAL S, AP T (3) 76T THE IS EAHIC, . B, B AL
IR J38, TR J, JOol o W A B IORUE.
H(x)= sign(ﬁaici (X)J

i=1
2.2. RUSBoost

RUSBoost J& —fi#1 i HL R RAE(RUS) 5 AdaBoost. M2 SLVEM 45 & RS 8RR 2 07k, BAEAL TR 2%
AP ) . FHoAZ O FE 2 AE Boosting (1R —401kARH, e ISR AT BEAL R RAE DL 2500 4
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AL, 15 30H— 5 ALE 0
AR, 2l T RiER)E, BB A A SR, AR R AR R A .
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t=1 Q,
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2.3. HUE

WA 55 Bt s AT R R SRR RN ST AR B O SR IR Ko A X IV 55 B0 AN T 1 5 S 1)
s SRORFEBOAR IR B8 BB R SR L SR BRI T 4% 32 K3 . SR80, AR GE M BENL ORI A7
E— B, BIRTAE R MR 2 PR ACT OGRS OSSP RE T B Ng S5 A [14]
PR T — R QUHT KT I A5 I RS B (HUE) . HUE SOEM TR £ 2 AR =M b ig: 5
TR AR oy ST B AE R DR KA NS SR

(1) FETa A 52 ) oy

HUE H50R IS REA(TQ) [15PX —Jo i B e s Jr AN 22 B A AT A0 2. 1TQ i e ML &AL
R, RS B RS AR, FRORE AR MARIE . AR R ET T

Q(C.R)=[lc-VRf

Her, CAERBA, VRE PCA BRRNSKERHERE, RZ MR ML iifeizm s,
PHEEAN 2R B LA . A RS A S AN R — AN A 7236, 723 e 8n = 2°
WS A AN B MIBUE S EHRE AT IR ASG, THEARN:

B—{Io —3Nmaj}
- gz Nmin
(2) F:THE R RIREA L %
T RE—AEA T (2 T A W), B E-DMINGTE, BEIA DHCREARNN, L
KA RFERIFEAR . REEIFARRENL, T2 R T DU BB A IR« BEAALUE o MITHE AT
1 d=0

LB, d; =0
d;2

Horb, o BRI AT S 2% T2 R A S 2 B B . 2 AR 0R T 275 72 W A A
(d, =0)EA M RIBCE, [AN4RIE 72 W ( d; 8P IFEAR AN T, AT GRIE T84T X )
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() AL ML

NEE— AN F NG — NI 2888 . B2, B 2 B S T 5 R N i
SRS HET H (x), HORREON:
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HUE S0 IH I i Ay bR B0 2 BOERFEA R 2 IR R R 728 0], I — B BE T A RO BE 40 55 R
[, HUE RS OR B 15 /D BORE AR 2 (8] 73 A AR A R AU AE A, SRR AR AT AL 25 X 20 W 55 IR R 11 5%
S FE o X T 55 B0 v R LA SR B (B AS AT o ASTRIRRASE A b B W 93 RFAE 23 A1 72 R 0K), HUE
{723 IR 7 BE 8 F IE I B2 AN TR AN ZR4E AT S THS AL 3 i I 25 B s i e 0, 1K
A5 LR S 3 P T A b I 55 DRSS FIOIAE 55

3. BRI SR
3.1 HEASHERR

AHIE 8 HE T o [ < N 85 080 R (CSMAR) 42 it 1 BT 24 &) o 95 S by i s g ie A . B 7
2010~2022 - [E A B BT A ], T LIRSS G B il ab B (ST) hil FEAE S Ak i 55 IN S5 41 e At . ST A
ZERef AL T B, B A KBRS A E e 1 T RS SRR U, B R S T A
R

D I 55 RS T A L RRAE , A SCHAR A A St ST /T 1 & 4 AT ER M 45 1 36 Bt # i D A
G (T-1 2 T-4), Wik 1. SMBIRENAE 21 T 554abs, MG . BRgEH. 8%
RO R I IVIRAEREE, BIaRah b B iR, MBI K Aasg, Rei% 4 i S Ak 55K 100
ERNEER

BEA M e, A B BT AR B EREIGK, (AL @ FERES 2 KA M R R i ——
4 ST 4k (5 HE ) 97.1%~97.4%, ST AV ELHIA L 3%, KA EA P47, X —BLSLty SR ™ &I 55 1A
3 TIINAE S b B PR, R I6 RCRAT: SRS AE AR I AN P PR R A Rt TSR . R 1 4
TS B DR R I SRR

Table 1. Description of the financial distress dataset
= 1. M RIEHIEERR

iolia
R HEE 247
NST ST
T-1 54,883 53,441 1442 97.37%:2.63%
T-2 49,168 47,885 1283 97.39%:2.61%
T-3 43,466 42,294 1172 97.30%:2.70%
T-4 37,843 36,738 1105 97.08%:2.92%

MR SR S VPA5 1 A TR SR e, S BEREEER A 70 JZ 4R, 4% 70%:15%:15% LL ] %) 70 9
IR WU ST, FEFEASR A0 5 A (R — 2. SRS 5ISE IR S BETE, A
BT IRTHESHOH L R SEVE, IR IR R R RE VP A O B R 5 o i
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3.2. MEIsIRER

RHIFRE T —BEZ UM SR iE R, W3k 2 fox, ATl S SR E T . 12K R
BT S KHEES . BAIRET ) EIZ ) KL OL TS B 5 A, e HCE AT AR IR 55 L,
ARG WA MY B 55 RS AN AL ARG o 2% Fi b e SO K 15, il s ot 5 52 5000
ARAANE RS 58 E K.

Table 2. Financial distress indicator system
2. MERIBIEIR AR

—Fdatr 7 E <77 Ei=p g
B2 TS TR 565
. A 2 (BT — FEIR)sh o
IS AR BEA 2 ST RS, 5%
ki B A A 55 7 S
ARG K R R P & RS FT A #R 25
. WABRR BT B e B KA i A & B
B R AR P R A R
EN NI KR ARFAENVSNSE KA T3 E SN S
LK 5 Je A 2 ERN NS S S SHF S
IR JE e % EV AR B3 R0
Higke ) BB e 2 BN B B 7= AR
Ié] 5 % 7= ) 2. BN 3 B3 7= 1115 40
FAETEJA  2 RN T B oP R
NN s s 2N~ ST Yale B It/ =R I =R A N O
FXHAETRFR AT A BERAN — AR
Ak H I A SEHNNET BRI — FEAME S
BRI A SRBATRE (EBIT) S 7 P 4
MR ERE R I IS AR o P
Rl et TR AR 2~ T AR
EDAIE EN RN
FlA 2l FH i 26 R LA B A 9 A

3.3. REENIERR

AW FEAEIA 55 IR 55 T (FDP) 1% 288 S 7Y FRI APl 43 S T R, AN T A 3 DA 4 T PP A A 28 1 e o
ik, ASCRA TPR. TNR. Gmean. AUC 1 MCC FLAME R, M 22 451 2 PPN R R TN g

1) TPR

TPR (True Positive Rate) X PR R BB A [FI%, B0 0 55 R A b (ST) B IERA IR Al BE 7. TPR
i, IR RS AL A P A iR, Horp TP RRELIEGI(SLhroN ST JEMIIN ST), FN R
SAI(S2BRoN ST AHTMIA NST).
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TPR =
TP+FN

2) TNR
TNR (True Negative Rate) X ARHFR 75, R WUt B0 T4 M (NST) 1 IEAR IR BE 77, TNR Bks, Ui B
B F 22 AR . o TN SRR JUR M (SEBR 9 NST FE A NST), FP RonBibsl(S:hr

NST 1 F A ST).
TNR = ™
TN+FP
3) Gmean

Gmean #i EREATEDHRE ZHE LRPATRDIEE 1. 1ZFRARE SR TPR AT TNR [F]H 1A 2145 5 7K F
I A B EORAE, Ao A R G A5 Y DR FE AR 1) B — 2 501 T 9 SO0 PPk 22 o ZE I 2% IR B 00 o
Gmean HE % U sz IR TR tof IRV Al R0 TR Ak 25 & P B &, R ilid A VRS APy 83 7 R
E 2N

Gmean =+ TPRxTNR

4) AUC

AUC FEFREPIEIETHE ROC 2R ™ (1 T ARSR i A AL 7E AN [F] I R 1 S X 43 RE )1 . AUC fEBEK,
FIABAITCRAE RN ST 162 NST B ¥HHA HRE A AET) . 5 —BETRFRFH L, AUC RE I Hi ik
FEA TR LE 56 B R (B G Y R B0, Jabeur 55 N (2021 4F). TN 100 25 R, e I 8 =41 1) Aol A 55 5
P AUC E&, PR T FDP B RE

5) MCC

MCC (Matthews Correlation Coefficient) & — 5 T IREHFE TH H A C R 5L, H RTINS RS R
SRR 2 AR 2 A SRR

MeC TPxTN—FPxFN
J(TP+FP)(TN+FN)(TN+FP)(TN+FN)

FAEBON[-1,1], HERRT 0 MIEMSR, AT 0 AR, 55T 0 WRRTCH KRR R, HHAMIER
HALE, MCC RELEREAS S RIA EEAT- i AR5 DL N (K IH ORFFBCIF AR E M S5 T SE I, BERSAE AT T K TH 32
P T 45 RO R TN 5, #ir 5 FDP SRS AR

34. BSHSFMEE

R ORET A R LB A S/ S U B N84T, AW FORT BT A A8 2% ST J ROCRFE T AT T RS
S . A FER F MRS 1% 22 (Grid Search) VE N S B 1% 0 S0 , BRUPERE TS KA 5 Hr38
MIGEHEAT, HLL Gmean fE AL ORALTERR, IR DHER S Z RN AITERE . BRI 3 21
S H AR Z A R T ik «

LR TT 1528075 8] (1) EasyEnsemble: FZ A SEN n_estimators (GE 4> K2 %R, BI-F
AR ER), WRIEEINIG, 10,15, ...,95,100]. HIEH KA KA LR G UM . (2) RUSBoost:
WIS EEHE n_estimators 1 learning_rate (%) 28, H TR0 55 0 a8 0 e 4B ) DOk =, 4
ZiH[0.01, 0.05,0.1,0.2,0.3,0.4, 0.5, 1.0]). 7 2Ka% FRE 9L G TR M . (3) HUE: a7y idfr %
B R IR LRI B B HiE, MONFIENENSHITAET ES . EERMSECN n_esti-
mators, FE5rRETRNMAL G PR -
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FEGE R RHFEJ77%: 4 ENN. Tomek Links. NearMiss 25, HAZOFE T8 T MU FIBEA R B 5o mE, @
ANV e A e/ b B AR S (W AR E K),  HOX S S HAE A SR O BN AN BRIME . AERET
FERCAN R R A SRS AR B O RCR, i se i A &, ARF O X e iR B SR E . & LidW
AR 54 WIERAE, SRR T-1~T-4 & O _ERE T RIS B E.

4. STEER 554
4.1 EERAIN R

RS, A SR SV T AR AR TR AR ERIN LR 5 R AE DY A I IR 7 1]
(T-1 % T-4) I BUIMERE . % 3305 7384 EA(LR) BEHLARAR(RF). B5 I3 TH (GBDT)LL & LightGBM
S 1k A

Table 3. Performance of the baseline model no sampling (T-1~T-4)
= 3. RRARFAIBRTEERB A M RERIN(T-1~T-4)

T-1 T-2
e
AUC TPR TNR Gmean MCC AUC TPR TNR Gmean MCC
LR 0.6882 0.5672 0.6913 0.6261 0.0973 0.6353 0.5556 0.6948 0.6213 0.0946

LDA 0.8132 0.1045 0.9971 0.3228 0.2275 0.8394 0.0171  0.9986 0.1307 0.0632
KNN 0.5360 0.0149  0.9980 0.1221 0.0468 0.5408 0.0085 0.9986 0.0924 0.0311

DT 0.8556 0.2985 0.9946 0.5449 0.4272 0.8355 0.0769 0.9944 0.2766 0.1415
ADA 0.9280 0.2836  0.9936 0.5308 0.3978 0.9339 0.1880 0.9922 0.4319 0.2731
RF 0.9270 0.2388 0.9971 0.4880 0.4072 0.9049 0.0598 0.9969 0.2442 0.1427

GBDT 0.9393 0.2388  0.9968 0.4879 0.4023 0.9315 0.1709 0.9930 0.4120 0.2617
LightGBM  0.9429 0.2687  0.9956 0.5172 0.4123 0.9363 0.0940 0.9930 0.3055 0.1551
XGBoost  0.9400 0.2761 0.9966 0.5246 0.4376 09321 0.1709 0.9922 0.4118 0.2522

T3 T-4
R

AUC TPR TNR Gmean MCC AUC TPR TNR Gmean MCC
LR 05476 0.3830 0.6864 05127  0.0252 0.4735 03085 0.6975  0.0024  0.0946

LDA 0.7537 0.0106  0.9987 0.1031 0.0400 0.7759 0.0319 0.9958 0.0709 0.0632
KNN 0.5237  0.0000  0.9990 0.0000 0.0053 0.5298 0.0000 0.9996 —0.0036  0.0311

DT 0.7921 0.0638 0.9955  0.2521 0.1271 0.7707 0.0213  0.9958 0.0454 0.1415
ADA 0.8628 0.0957 0.9955  0.3087 0.1823 0.8215 0.0426 0.9951 0.0873 0.2731
RF 0.8605 0.0000 1.0000  0.0000 0.0000 0.8477 0.0000 1.0000 0.0000 0.1427

GBDT 0.8571  0.0957  0.9990 0.3093 0.2618 0.8352 0.0426 0.9958 0.0947 0.2617
LightGBM  0.8707 0.1170  0.9981 0.3418 0.2673 0.8414 0.0638 0.9970 0.1552 0.1551
XGBoost  0.8743  0.0745 0.9990 0.2728 0.2224 0.8493 0.0426 0.9992 0.1628 0.2522

ST, SR IEAN(RF, GBDT, LightGBM)7E AUC fEkr LRI, T-1 % 111 F15 AUC i
it 0.91. FRT, IXLEAREAYNS D BB BE 15, HEHMER(TPR) WAL T 0.55. SN, ®
B (TNR)IGEREFE 0.95 DL L, 6B RAE 43 2R R b i o) TR AR A I A 2508, 2O “mike
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B ARREUE” SIS A T 22

MEEETERETEAR R, Gmean 5 MCC B AIKFMAR, 78 T-1 I (E & 1 L, ~FEME 750 0.46 AN
0.32, RYIMEGE 7 IS AN THT OB AT T, e LU ROR T N ST AL R SC B RFAE, PRIEA ZE5I N
RAF BACH BB S ST AR TR VE RE . UL, FEAE TN [A) B 1 A T-1 SEAC 3 T-4, AR fE
TR T &S, AUC HRFRT-EIFEKL 10.9%, Sl B IV 55 FE AR (I 20t PR A0l Tt BA 5 200

R, T IEAERCR A 25 R AT AR DU R R R (1) AR EE R S5 D0 A (n BE R FA 2 R AR ) A
A2 ARSI BEAS T A s (2) AERIPITII A, A5 B S 0adt — D R R K ko ehiimr WL, 7 2R T
KB HRBITERE, AR UIZRNT B G AFEAS BT 5k, DA SR 0 A R a Ak id 52 >

4.2. EHGRRBESEBRRREFEF EERETEM

TERERRPERE 2 IR 36 Rt L, it — D3R s R D BRI RE 1, RSB TG R RS
SERRRCRFE ST, IR T 3 1R KRG R RE (R 4~7) BT RORFE TR 3T Ui
VBB 2188, DAORIEAE B EE R 1) — B0k, T 1 e 22 57 2 B WCR AR AL AR 5 e ma, iR 7y 248
R ZES.

BARRE, ML T2 25 PE RSB I FEHERTY LR, LightGBM. XGBoost, K RFEHEE H AL s & 2%
R A H S (B A ) (1R e 73 (TPR), H G B AR R B S L 5 T o b G B 22 5. A%
GLRCRAE 75 ENNL Tomek Link A1 NearMiss) =5 2258 ik Bl FAAEAS . e s FEAR BT AR AR A R Al 2
AT RAT . SRIEERE IR, XR A — SRR LRI TR R DGR, e AR, B
FESR > T U RADAELE B B M RE A L 4

DA T-1 % 1 256(7 4), ENN 5 Tomek Link 7ELRHFE =i 57 B2 (TNR = 0.995) 1& It T, TPR 10 0.32,
55 Gmean 5 MCC 4k F H45/K (%) 0.56). NearMiss B 5RE it It 2 1 B FE il /D B I 2 BERFEA K
MEHETE T TPR, {H[FIRER TNR 2% FB&(1X 0.1436), Gmean 1¥ 0.3737, MAP#iMERZE. MELZ T,
B R RRE TR R BT k. EasyEnsemble 7E T-1 % H FSZ8L T AUC =0.9427 5 Gmean = 0.8955
MR LRI, TPR A 0.9037, TNR JRZERFAE 0.8873, EILH B FIHHEHFE. HUE HIEAA KD — D
Tk, Gmean ik 0.9021, HEmARMFELAIIRTIZ) 0.28, BiHZ I VEER T/ D EEE(E S I RIN AR5 T RITF
(2 B IR 1. (HASVER RS, HUE ) AUC (0.9476)5 ENN (0.9500)4H2Y4, {HAT#H7E TPR -#2THE
0.6, W HAERARLN L5 T B EHE

Table 4. Predictive performance of different under-sampling methods in T-1
4. T-1 BOTARIR R AR TN T E

KA iRt AUC TPR TNR Gmean MCC

ENN 0.9500 0.3211 0.9949 0.5652 0.4399

RFHE Tomek 0.9512 0.3211 0.9954 0.5653 0.4486

NM 0.7216 0.9725 0.1436 0.3737 0.0536

RUSBoost 0.7615 0.3394 0.9839 0.5779 0.3348

R R EasyEnsemble 0.9427 0.9037 0.8873 0.8955 0.3733
HUE 0.9476 0.9083 0.8961 0.9021 0.3902

1E T-2 & (R 5)H, ARG RRFEERIRAAE /13t — 20 . ENN 5 Tomek Link [ TPR #1&T
0.1, JLFEERMIIAE; NearMiss B4EFiE TPR, {H TNR X 0.12, SETRIMALE w7 /b #2k . tHELZ
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T, HERRREEITER R T Afafit. EasyEnsemble 5 HUE ) TPR 4341y 0.823 5 0.867, Gmean i%&
0.844 5 0.865, AUC it 0.90. JuH: & HUE, H: Gmean #: ENN $27F 0.55, & B HAEB KT 44
REPRFFE R I P 52 10 RE 7T .

Table 5. Predictive performance of different under-sampling methods in T-2
F# 5. T-2 @O TAE R RS AR TN M BE

3| il AUC TPR TNR Gmean MCC
ENN 0.9265 0.0985 0.9974 0.3135 0.2163

RFFE Tomek 0.9309 0.0985 0.9971 0.3134 0.2103
NM 0.6046 0.9507 0.1228 0.3417 0.0369

RUSBoost 0.8980 0.7980 0.8581 0.8275 0.2928

IR FE EasyEnsemble 0.9085 0.8227 0.8659 0.8440 0.3129
HUE 0.9306 0.8670 0.8625 0.8648 0.3276

M T-35T-4HNGEE 6. £7), BEETNIAELR, W SR RBRRES AR B3 T, if
BRI AR VEREI A P R1T8 o AR, SRARCRFE TR IR R AR R iR B /. Hoh, HUEZE T-3 &
FIf) Gmean 1% 0.776, TPR 24 0.79, B & T HARSCRAERIAL, 1£ T-4 %W, HUE #KIRORFF Gmean =
0.753. TPR = 0.78 {7k, EasyEnsemble tHEEZERF Gmean = 0.712 (AR KT, BT TAL G K KAE
B ENN 5. X R, REMFE5BH=ZIR, £RICREERRIMUR Z 1T TR IR B 7 5 84k
FURFEEEYE, SETE RS R) B 1 T Hh R I B s AR I S iz k.

Table6. Predictive performance of different under-sampling methods in T-3

6. T-3 B O T ARIR R AR TN T E

KA iRt AUC TPR TNR Gmean MCC
ENN 0.8472 0.0323 0.9984 0.1795 0.1032

RFHE Tomek 0.8530 0.0323 0.9991 0.1795 0.1216
NM 0.6483 1.0000 0.0848 0.2912 0.0513

RUSBoost 0.8163 0.7527 0.7554 0.7541 0.1931

EERLCRFE EasyEnsemble 0.8296 0.7258 0.7875 0.7560 0.2039
HUE 0.8493 0.7903 0.7618 0.7759 0.2111

Table 7. Predictive performance of different under-sampling methods in T-4

% 7. T-4 B O FRR KRS AT A

Bzt it AUC TPR TNR Gmean mccC
ENN 0.8281 0.0060 0.9995 0.0771 0.0345

RRFE Tomek 0.8222 0.0060 0.9993 0.0771 0.0299
NM 0.5724 0.9107 0.1697 0.3932 0.0365

RUSBoost 0.7844 0.7024 0.6785 0.6904 0.1370

R UR RFE EasyEnsemble 0.7943 0.6607 0.7678 0.7123 0.1689
HUE 0.8248 0.7798 0.7263 0.7525 0.1892
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Figure 1. Comprehensive performance comparison of prediction models across T-1 to T-4
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Figure 2. Average ranking of prediction models
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