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Abstract

As avital urban infrastructure, the energy consumption and carbon emissions of urban water supply
network systems are receiving increasing attention. Against the background of the “dual carbon”
strategic goals, achieving low-carbon operation of water supply networks has become a research
hotspot in the field of water engineering. This study systematically reviews the sources and compo-
sition of carbon emissions in water supply networks from a full life cycle perspective, focusing on
the application progress of machine learning technology in water demand forecasting and low-car-
bon scheduling. The study shows that carbon emissions during the operation phase of water supply
networks account for more than 80% of the total life cycle emissions, with pump station energy
consumption being the main source of emissions. Machine learning models such as Long Short-
Term Memory (LSTM) networks, Graph Neural Networks (GNN), Random Forest (RF), and XGBoost
have shown significant advantages in water demand forecasting, with prediction accuracy exceed-
ing 90%. The application of deep reinforcement learning and multi-objective optimization algo-
rithms in pump station scheduling optimization can achieve energy savings of 10% to 30%. Based
on typical urban cases at home and abroad, this study further explores the technical pathways and
future development directions of machine learning-driven low-carbon operation of water supply
networks.

Keywords

Machine Learning, Water Supply Network, Water Demand Forecasting, Low-Carbon Scheduling,
Carbon Emissions, Deep Reinforcement Learning

Copyright © 2026 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

1. 5|15

YT K W R GE A SR T B AT I B A e, HIS T R R g AR A, TR
SRRV E . G0, AERKS RGN REIRFEL 5 30T a1 2%~4%, 730708 Kk T
B Z I 5% [1][2]. 7EFRE “RUH” s B AR RN, 0T AR Ui R B B O ROy TR S A
B E BT F[3]. AR RGHRE BRI B R HE, R 8. W& BR &g
AT SR S 2 EL [N R AR 4] 5]

2K I BCHE OF AEAURIE T B — R & BT, MR F THUK. $iks Ik ek BA S A v
K TERERAR6]. JLHAEIRTT AW 7K F/K TR 2R EB BRSNS R T, RakBsR
BE A RNz AT P FE 7 2 O L R AR BRAGIZ AT T 3R [7] [8]. BRIk, MR GUZTHIU 45 /K W B HE R
P8, HEFI BRI R 1%, & 24T K 55 T RR ATk 55 A LR ) Sk 1

IAESR, B ERER LS . SCADA R4 L5 BT G PR R, 47K WIZ 1T 504 3R
K5 PRI (8] 73 E 230 S B 4R TE, ML 2 ) SR IR 2h 7 VA I N B AL T ISR 9] [10]. MLAS 2 I fEAL
HARLEME RS BRI P AR DL m 4R T TR U B BAR S, S T KB IR IR B S
WK E S 11]-[13]. REGMINLAF IS K E WRBOE AT RIS R, X THEBIK S R4
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2. LK EMERIERHEBORIR 54
2.1. HKEMIZHRERGHAF

I T A K R LR BUK A R . R KER/KIZ S, . JKAER) L WS KERRC IR oy AC /K DA S R
Ui B . 1% R LLIESEKON B, Hag A7 i 1 m BEAROBE ) kB e #s [ 140 BT A dw A IHVFAN (LCA) TT
%, BAKE MBSO 2 N B BT B S 4R B, A IS AT BOR B DT R 1 [15]
[16]. Qin [ 17104 265 MWK R Gu it 4 A= iy FURBRHEBGHAT T 1Ak, RIS AT B BORHER & Ho i
I 80%.

Zhang %[ 1819 T “/K - felR - 07 RBRMLA, 07 T K RGUMRHEBUZ SHESE, FAR N T K R4
R ABOK K HARFIG KA F R S8, NTTK S RGmcHiuz Bt 7 k5% . hE
BUHKHEK 2 (191K AT (IBIK S RAIRZ E SRR HORIE ) #E— PV 74K RG 15KAR
i K RGN K RGeS 55 7554 ).
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Figure 1. Urban water supply network

B 1. TS K A

2.2. 7Kk SECKIAT B B iR HER

TEIBATHNEL, KRR G 457K E W i 3 B ) B REAE SR HF SO . SR IS AT R MY 5 W& P Re
FAG, I BBAT LA 2 HENE 1) 25 520 [20] (21 BTFTRYT, TR AEAE (i B B it Tis 47 R 2
ERWE, g K B S R el DR R R ALK REFE[22]. Qiu ZE[23 % REETH KAk
A FEBHEBOIAT T 0, R IUE PR 51 R 1 B HE O B P A BRSO 1.88 i, R T IR R
TR P B B

PN, KR R S AT R T ER I, S BOMAMEIR AT A/ BUK . A B S Ik
IR, AT T BRI RHE T [ 24] o e 7087 B 3 ) A I R B3 0 R0 B W i dia i, 9 I R 1 B PR 10%,
TR AR 2] 7%~12%, X RLRIZR S RERE TR 2D N % [25]. Stokes S5[26]4& H T 25 R i AR R HEUF T 1)
SRR FEARAL T, TR AR F IR e 2 PR IR AR AR AR A A S 3l 1B AT W

2.3. F/AKFMRE S| & BFRMERRHER

FREFRAERESL, RR/K TN ZE BN R 40 7K X R Gt v (A B B PR B . T 45 SR B M R ot
R SIS AT DA [27]0 A TIE T SERR RN, 2 A TUARH AR TR RERE; TR AR T SE PR KR
I, U5 2L N SR R B R A AT AT AM . TR EREAE S iR T [28]
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Kiihnert Z5[29]FIAF FL LM, K IR ZERERRAR 1%, FRUEBEREN] T %2 0.6%~1.2%, KUK
FETH X 2R G AR B AT 25 A1 RN o DR, v e /K TGS 52 A S B /K8 IR BR IS AT (K SR B AR 2 —

24. £REAUATHESHRIE

WA FARIMAER, SKEMRBRATOL BARE M A B g S B LG B RGBT
F5[30]. Wang 55 [31 0 FRE TG /KA LR G = A HBGEAT T 4tz 5, @57 7 CHy NoO A
CO, ] AU . Zhang S5[32] 2518 T 3 IR 117 7K 55 B Al B0t 10U 2 SUMCHEIBCRAALE - i Hh AR ORAIE T 82
RETTIK R GERRHEBGE B il BRI I A A R ot 70T =505 17 o L4 RA W FE TR RIEN LA 5
RS I 55 2 R b it b Do RERE DR, REZ T IR HFTRUE 2 T 5 /K R G b o BB, (HBE A A
RS IR BERNSE PR, AT (B A5t — 2B 5 [33 ]

3. HARFE I EL/KTRFTM P SRR
3.1. REIFFIFMRE

KT HH A2 2% (LSTM) & 1 AF- SR 45 7K 5 /K T o S FH B R )32 IR B 2 SIS A 2 — o AL )
PRI R K 75 SR K5 B IO AE , 76 2 DI R0 B T14 4 ARIMA 254011454
[34][35]. Zanfei Z[36]4H T 3T 24 & LSTM MAHA TR K TR, @it il &< S 80 B &5t 1 1l
MKERE . PuSE[3710F KR T 454 /NEAZ ) Wavelet-CNN-LSTM R A HRL, 785 38 17 75 /K T v B A5 17
R

IeAh, BENLARMR(RF)S XGBoost 254 il ST A PR LI Zhfs e PR . i s B0Hs S e e e,
2 N T R A A R K TRINAE 45381 [39]. Chen Z5[401#2 H T 2 BEHLARMALAY(W-RFR), 454 5 HU NG AR
kAT H ALK ST, 723 PTG SRR S T R I B = kS 2 o Grigoryan S5 [41 0L 2 ) 5L G0 4%
S SEVERAT T ELETAT, RIS S A gD AE-LSTM ASAYLE H R EEFI/INGE R BT ch g T30 8
If1] £ [0] I (SVR) A BE A LAR K

3.2. FEFHEEERS ERME ML

B A 4k T 2 [ s AN o3 DX KAS B EIN, B R 22 N 45 (CNIN)IZ B4 A T 20 AN [R) it 7K 23 X 2 )
(23 [ AR OGP o 3 DX 3 e /K S it Dy 2= (B RRAE AR R, CONIN RERS R FH KA S 2 () SRR, vy
XA B AR S FR[42] Hu 25[43]32 7 CNN-BILSTM IR &1, R4 1 75 K 5 B ) gt 5 4%
6] 73 A RAE . Zhou 2544101 K T & F1ERE AIHLHIA CNN-LSTM HEZ4E, FHF75 0N 117 240 & H 4K, &
ERTE TR R PE R )

3.3. EMEZMEELKEMPAHTR

AR, B X 45 (GNN) R L e 6 B R S W PR 4 5 M T 32 2 )2 5538 [45]. GNN R T A
HE BB R 51, v R AR R KRR S5 7K D18 E R o Zanfei 5546 R F B ARG
L LG AT TR TN, UE 7 X HME B0 TR B B4 THE R . ER 845K E M, GNN ZE Tl kS
JE S RRZ AL RE S T7 I TN 5 R 8] 57 ()RR AR Y (47

GNN 7E 5 WA 5 52 7 A8 g It 1R 47 LT AT 5t o Zhang S5 [1314& H 1 SR J17 B 28 X 24
(AIGNN), FH Ford-Fulkerson Hi:HIRIE @AY 12 HLRETT. Wu S5[481HF K 15 T G 4 I 4%
(CGNN)E PR 5 e A AL, FEH [ H T i SE PR EAR T 90% A L 1) € A7 #ERi % . Barros 5[ 12]4f
KB5S A BB S T I 5 85080 0 A, SR B 7 ik I A% S 4 A PR s A
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3.4. BHZERKENN B R RRYE

R L IRNLAR 2 ST AR 25 /K A WX 55 /K 000w F L S8 3B P 34, (H 8 SRV S s TR N R AT A7
FEANFIREEE I JRI PR, T AE A AR 1ok 43 5 30 38 IR A5

(1) LSTM (K BHE 12,58 34 ) it

LSTM Bl [ L Bk TR Om ¢ &, (BAESERR R A, 24 F1HK R e i 250 1 I )
OB, HEEE 2 0 S BRC 2 BE 1S B T [49]. EA/KEMIZHE N, UHEAMHAEAEERA R
F KBRS B ZE MR S 5 H S I, bR LSTM AR I A3 A 3 DA Rl 2 1 SeK  JRiok &
A, LSTM fE VIR F2 H A7 vl g EIUA0 B9 R Il R, 5 0SS 8056 B B N5 5. RO B2 AR [ 50]

(2) GNN Fyit P35 1] j

B il 22 P 48 7 VR )2 HE B B 2 HH B0 P 3 (over-smoothing) Il %2,  BIFEEE P2 25038 0, AR S 4y
e~ T — 3, SRR HEE T X 236870 R RE[51]. X T R T 257K 8 W, X — 18I0 A R
H: 24 GNN ZEG I LAY RIERSZE | e 5 B 55 (SR MRS, 15 fURFIE T REAE (S B AL Rl R rh i
B, O AR TR BE[52]. HAT, bRZEER: . BhikiEH: . DropEdge S8 AR H T 22 i ik~ [l it
{BER 3 MG T IR A Rt —DI0AE . thAh, GNN [ 7155 2% B B A IR KT 2% b7t
X T B T RO SE BRI T I, A B 2 A B AR T I PR AR 53]

(3) RFE SR ) I ZRCSSOHE 7] R

TRPESR AL 2] (DRL)AE Z2 3t 1 B2 LA B R I tH R B A T 55, (R LN GRad AR TG 22 B Pk . 1%,
FEAR A2 DRL [ AT 60, R REAR T 2 5B AT KA B e ) B RO, T 45 /K8 ) H
SHSAT R IRISAS S &, 7 FIAE S SR 2R G0 2 18] SAFAE AN W] 38 G PR B R it 22 (sim-to-real gap) [54].
R, R R AR B SRR 2 2] U7 ), ABAE 2 HARMAL = S AR R RERE . K. KBi5E), %
Jih BRI A A L W B R = G — bR, AS[ESCTE AT RE S BRI IS B A 8] 1) R B A A 55 4R, DRL
TE R AEE S AN (] AR E MR, SRBEHR BEAN T 115 0T 2285 5 3 BON ZRid RE 4R35 L 28 K

(4) LR IR & i 57

BENLARAR S XGBoost S 4L B2 I8 BRI ZRAGE . XM Sk, (HILAR U B S BLUBA, kDL
A RGP P BSOS R . TR KR R A AHRRFERI 5T, S8R0 ST R FRU A
FEIEHE B TR A WL thah, XBBIARHE TR R B, BN LA ERHIE. 13
T OGRS FRE, SN 7RI R 0 A &5 AU AR ER [56]

Table 1. Model performance comparison

1. REREXTEE

ey BT T kS B & 5% ERTZIES WHERE  ZHE R
B [F] /5 41 LSTM, GRU >90% I KT ()R (AR TR BERG L) &g [34]-[37]
ZAEM CNN, CNN-BILSTM  85%~92% 2 43 [X Hir [&] il 10%~15%75fig L3y [42]-[44]
KM 2% GNN, GCRNN 90%~95% HAIEIHEM 10%~20%75 fig [ [46]-[50]
R RF, XGBoost 88%~93% A, MRS HdE E1E: 3 i< [38]-[41]
WAL ) DQN, PPO - SN AR 10~30%17 fig [ [54]-[56]

HARBVERER Lane 1 for, RePPERERE TR RIE T AN FRIBT FEAE & E B e L 452k . (HH Tl
2K P 5 7K TN B 1 ik = AT 8 IR S HEROR 4R, S [FIBIE FUR T B0 SR8 2% AR (B IO L I (] 73
B AR BURFURE . TP RIS E SRR E R, FIRP AN S, LT ™ i1
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4.1. NS BEBE N RkREE

BLA 2 SR ok B2 /= TR K TR B, A2 /K W B R AL BE T SE M N o TEULIERE |, 4567800
R R XA E SRR RN, PN IE AT IR R X R, AT B2 PR R L REFE 5 ik
HE57] [58] (A 2). Chen 5[5 IREE 22> 5 ResNet EVER INLHIAISG &, TFR TI5/KIEERERE
A, 5445 PID fa il AH Eb AT SEEL 10%~30% 5 AERUR «

TR 5K 27 2] (DRL)FE 32 3 S 1 2 A4 A F Bt 25 A 94« Hajgato SE[60HHIRE Q MIZS(DQN)
M TRK RSk, KI DRL JiEERFFS &G T AR SRR I RIS, THECE ST T 2 i
Shen Z5[61 14 H! T 3 T3 % SIS AL AL(PPO) I ZE B SE IR FE 7 ik, A RCF T RS WM 5847 A . Li 2%
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Figure 2. Schematic diagram of the coupling mechanism of forecasting-scheduling-carbon reduction

E 2. FUN - R - B SR EE

4.2. TEIHEBERIRHR LR

DA BNy, SRl T B[R] 41 0 TOIIASE 2R FE Db 8UR A AE— e PR, T 5N (R B b
5 S R AE 22 DX I ) 8 P v PR B v 06310 FESEBREBI, FET GNN (1 0 5 1 i S m s
I 10%~20% 132 5t B FERFAIG,  AH RIRRCHE RO S 535 R R [64].

%2 HARMRAL iR ZE vk B rp A8 3 T T2 N . Abdallah Z5[651K AR T BER AL L (PSO)AIEE L
BeHE P gL B (NSGA-IDIFEAT b R FEAR AL, FERERS /K BT 2 (B SEIL 75 208U« Filipe S5 [66 K £ 4 Bk
B EWNERMES G, EI5KIEIRARMR A PR T B MR . Mt S 2 B st
WM RIFAT S, TE RGP SIBIT A 2 AR R I RFEATIE67].

4.3. Tl - BEBESNEZRES T REELE
WL 27 ST XN (R 265 /KA A AU L P 2R 0 0 R P e BORB 5 28040 . 58— I BON K IS, 4715

DOI: 10.12677/ulu.2026.141002 22 SR, 5 4 24 FE A


https://doi.org/10.12677/ulu.2026.141002

i3 ERE

N

PE SRR I B i) T K BEPUAE S AT E PR T S8 I BOWIRBE AR, DLTRINAE ROVHIAN, 755
FE R G AN ML 5% P T SRAB BRSBTS . T /K T LR A (L S T D, I RE AR A3
TRAE 2 VE R R AL T 5 BB E ERAE T N0 © WX : 45 B f (1 -a R EE X
deuwﬂ,ﬁ¢aﬁﬁﬂ&%ﬁ0mMDWK%§%ﬁ:%ﬁ%ﬁﬁ@ﬁﬁ%ﬁ%%mwmﬁﬁ
7k, i BIE R SR P (D,|X,); @ SERBiil: I 2 BB i B B (E 5 77 2%,
cl)e

VA A A R i T AR (i I, TSR AT SR A BT AN = SR A (B R AL 7 820):
TE SRR T HEAT R E SR, 5 7 /K B 18 B X 16 F B 5 D", B ARTEAE AT 7] BRI R /K 52 L
RGURET L POKA R IR R, & T UKL et EORW R R 5. Hans B (FEHL 7 i%):
B K AL BEAL A B, BT TN B AT R 2 I S DAL o SERERS 24 K3 AT I AL
EM BRSO BUMERERE S BRI, FIRSE LS 2 A il KA L B RS ER . g C (GRBI R
H0): SRR BIRE SR, A9 il e 22 AR A Shof P00 45 R B R A LA B, BT 4T i 21 F)
RSN IR PR 7 AR A RAMA TN 22, 2/ RGN A E ERIENIRE ST S D (PR R
W5 R AL EE): fE DRL HESRS, B BEARIEI S M A RPERA B2 o) S LS, TN AR E 1 4
AP IREF WA . 208 7870125 1% DRL SIS REWS B 15 R RO A RIFR BE T R 22, o e 3
BRAHEYE AT, B3 TEMTRIE T FR KA SR Al (o AL IB 2 DAL TR AR, IR JoR 1 I s
PR o] Ak ST ) AR E o

R
SCADAZ 4 RGN Hpifs 8 IR 44 A
| | |
by
KEE TR S MR
- -
FHK ok B
LSTM GNN XGBoost CNN-BILSTM
[ | | |
NG T AN £ B
-
R AL R
i P LR 2 AR
i s HI: Bt R R)
St HEUR R R T S
MPCIEBNRAY. DRLEG R "%k NSGALL PSO. DON. PPO
, i R T SENA R BRI 1) '
| 4T SR |
iﬁﬁﬂ%%mﬁ) SCADA %5 #% %%5%%&%%;
e BN (e 1y S —

Figure 3. Coupling framework and data flow diagram of water demand forecasting and dispatching optimization
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