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摘  要 

城市给水管网系统作为城市重要基础设施，其运行过程中的能耗与碳排放问题日益受到关注。在“双碳”

战略目标背景下，如何实现给水管网的低碳化运行已成为水务工程领域的研究热点。研究从全生命周期

视角出发，系统梳理了给水管网碳排放来源与构成，重点综述了机器学习技术在需水预测与低碳调度领

域的应用进展。研究表明，给水管网运行阶段碳排放占全生命周期排放总量的80%以上，其中泵站能耗

是主要排放源。长短期记忆网络(LSTM)、图神经网络(GNN)、随机森林(RF)及XGBoost等机器学习模型

在需水预测中展现出显著优势，预测精度可达90%以上。深度强化学习与多目标优化算法在泵站调度优

化中的应用可实现10%~30%的节能效果。结合国内外的典型城市案例，进一步探讨了机器学习驱动的

给水管网低碳运行技术路径与未来发展方向。 
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Abstract 
As a vital urban infrastructure, the energy consumption and carbon emissions of urban water supply 
network systems are receiving increasing attention. Against the background of the “dual carbon” 
strategic goals, achieving low-carbon operation of water supply networks has become a research 
hotspot in the field of water engineering. This study systematically reviews the sources and compo-
sition of carbon emissions in water supply networks from a full life cycle perspective, focusing on 
the application progress of machine learning technology in water demand forecasting and low-car-
bon scheduling. The study shows that carbon emissions during the operation phase of water supply 
networks account for more than 80% of the total life cycle emissions, with pump station energy 
consumption being the main source of emissions. Machine learning models such as Long Short-
Term Memory (LSTM) networks, Graph Neural Networks (GNN), Random Forest (RF), and XGBoost 
have shown significant advantages in water demand forecasting, with prediction accuracy exceed-
ing 90%. The application of deep reinforcement learning and multi-objective optimization algo-
rithms in pump station scheduling optimization can achieve energy savings of 10% to 30%. Based 
on typical urban cases at home and abroad, this study further explores the technical pathways and 
future development directions of machine learning-driven low-carbon operation of water supply 
networks. 

 
Keywords 
Machine Learning, Water Supply Network, Water Demand Forecasting, Low-Carbon Scheduling, 
Carbon Emissions, Deep Reinforcement Learning 

 
 

Copyright © 2026 by author(s) and Hans Publishers Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
 

1. 引言 

城市给水管网系统是支撑城市运行的重要基础设施，其运行过程具有连续性强、能耗水平高、调度

复杂度大的典型特征。据统计，全球水务系统的能源消耗约占城市总用电量的 2%~4%，在部分超大城市

中甚至超过 5% [1] [2]。在我国“双碳”战略目标背景下，城市基础设施的低碳转型已成为工程与管理领

域的重要研究方向[3]。给水系统的碳排放主要表现为电力间接排放，其强度受电力结构、设备效率及运

行策略等多重因素影响[4] [5]。 
给水管网的碳排放并非仅来源于单一设备或环节，而是贯穿于取水、输水、加压、配水以及末端用

水的完整流程[6]。尤其在城市规模不断扩张、用水需求呈现显著时空非均匀性的背景下，传统依赖经验

或静态规则的运行调度方式已难以满足低碳化运行需求[7] [8]。因此，从系统层面识别给水管网碳排放来

源，并且引入数据驱动的优化方法，是当前水务工程领域亟需解决的关键问题。 
近年来，随着传感器网络、SCADA 系统以及城市信息化平台的快速发展，给水管网运行数据的获取

精度和时间分辨率显著提升，为机器学习等数据驱动方法的应用提供了现实基础[9] [10]。机器学习在处

理非线性系统、复杂时序数据以及高维特征方面展现出明显优势，已逐步应用于需水预测、漏损识别与

调度优化等水务场景[11]-[13]。系统梳理机器学习在给水管网低碳运行中的应用进展，对于推动水务系统
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绿色转型具有重要理论与实践意义。 
本文基于全生命周期视角，对给水管网系统碳排放来源进行系统分析，并重点综述机器学习在需水

预测与低碳调度中的应用研究进展。全文依次从给水管网工艺流程与碳源解析入手，总结主流机器学习

模型的技术特征及其减碳机理，比较不同算法在工程应用中的适用性，并结合典型城市案例探讨未来发

展方向。 

2. 给水管网全流程碳排放来源分析 

2.1. 给水管网工艺过程与系统边界 

城市给水管网通常包括取水构筑物、原水输水泵站、水处理厂、清水输配泵站、配水管网以及用户

端设施。该系统以连续供水为目标，其运行过程高度依赖电力驱动设备[14]。基于生命周期评价(LCA)方
法，给水管网碳排放可分为建设阶段、运行阶段与维护阶段，其中运行阶段是碳排放的主要贡献环节[15] 
[16]。Qin 等[17]对我国 265 个城市水系统的全生命周期碳排放进行了评估，发现运行阶段碳排放占比通

常超过 80%。 
Zhang 等[18]基于“水–能源–碳”关联视角，建立了城市水系统碳排放核算框架，将郑州市水系统

划分为取水、供水、用水和污水处理四个子系统，为城市水务系统碳排放核算提供了方法参考。中国城

镇供水排水协会[19]发布的《城镇水务系统碳核算与减排路径技术指南》进一步规范了给水系统、污水系

统、再生水系统和雨水系统的碳排放核算边界与方法(图 1)。 
 

 
Figure 1. Urban water supply network 
图 1. 城市给水管网 

2.2. 输水与配水环节的直接碳排放 

在运行阶段，水泵系统是给水管网最主要的直接能耗与碳排放来源。泵站运行效率不仅与设备性能

相关，还受到运行工况和调度策略的显著影响[20] [21]。研究表明，恒速泵在偏离设计工况运行时效率显

著下降，而高峰用水时段集中启泵会进一步提高系统的单位供水能耗[22]。Qiu 等[23]对天津市供水企业

全过程碳排放进行了分析，发现管网漏损引起的碳排放是管网维护碳排放的 1.88 倍，凸显了漏损控制对

碳减排的重要性。 
此外，长期偏高的管网运行压力会加剧漏损问题，导致为补偿漏损而进行的额外取水、处理与加压

过程，从而形成间接碳排放[24]。压力管理是控制管网漏损的有效手段。研究指出，管网压力每降低 10%，

漏损量可减少约 7%~12%，对应的泵站能耗亦同步下降[25]。Stokes 等[26]提出了考虑时变碳排放因子的

泵站调度优化方法，可根据电网碳强度的时变特征优化泵站运行策略。 

2.3. 需水预测偏差引发的隐性碳排放 

除直接能耗外，需水预测偏差被认为是给水管网系统中的重要隐性碳源。预测结果直接影响泵站启

停计划与运行负荷[27]。当预测值高于实际需求时，会产生冗余输水和无效能耗；当预测值低于实际需求

时，则需要通过应急启泵或高功率运行进行补偿，从而导致能耗与碳排放上升[28]。 
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Kühnert 等[29]的研究表明，需水预测误差每降低 1%，泵站能耗可下降约 0.6%~1.2%，表明预测精度

提升对系统减碳具有显著间接效应。因此，提高需水预测精度是实现给水管网低碳运行的关键途径之一。 

2.4. 生命周期视角下的综合碳源 

从生命周期角度看，给水管网的碳排放还包括管材生产、设备制造与更新以及信息化系统运行等环

节[30]。Wang 等[31]对我国城市污水处理系统的温室气体排放进行了全面核算，建立了包含 CH4、N2O 和

CO2的厂级排放清单。Zhang 等[32]综述了我国城市水务基础设施的温室气体排放特征，指出未来研究应

关注污水系统碳排放清单编制、能效提升措施的成本效益分析等方向。近年来有研究开始关注机器学习

模型训练与部署过程中的数据中心能耗问题，尽管该部分碳排放在当前给水系统中占比较小，但随着模

型复杂度和应用规模扩大，其环境影响值得进一步关注[33]。 

3. 机器学习在给水需水预测中的应用研究 

3.1. 时间序列预测模型 

长短期记忆网络(LSTM)是近年来给水需水预测中应用最为广泛的深度学习模型之一。该模型通过门

控机制有效捕捉用水需求的长期与短期依赖特征，在多个城市案例中显著优于传统 ARIMA 等统计模型

[34] [35]。Zanfei 等[36]提出了基于多变量 LSTM 的短期需水预测模型，通过融合气象数据显著提升了预

测精度。Pu 等[37]开发了结合小波变换的 Wavelet-CNN-LSTM 混合模型，在苏州城市需水预测中取得了

优异表现。 
此外，随机森林(RF)与 XGBoost 等集成学习模型因其训练稳定性强、对噪声数据鲁棒性较高，也被

广泛应用于中短期需水预测任务[38] [39]。Chen 等[40]提出了多随机森林模型(W-RFR)，结合离散小波变

换进行日供水量预测，在重庆市的实际应用中展现出较高精度。Grigoryan 等[41]对深度学习与传统机器

学习算法进行了对比研究，发现结合自编码器的 AE-LSTM 模型在日尺度和小时尺度预测中均优于支持

向量回归(SVR)和随机森林。 

3.2. 空间特征建模与卷积神经网络 

随着城市空间数据和分区用水信息的引入，卷积神经网络(CNN)逐渐被用于刻画不同供水分区之间

的空间相关性。通过将区域需水量映射为空间特征矩阵，CNN 能够识别用水模式的空间聚集特征，为分

区调度提供支持[42]。Hu 等[43]提出了 CNN-BiLSTM 混合模型，有效融合了需水时序的时间依赖性与空

间分布特征。Zhou 等[44]开发了基于注意力机制的 CNN-LSTM 框架，用于苏州市多变量日供水预测，显

著提升了模型对复杂模式的捕捉能力。 

3.3. 图神经网络在给水管网中的新进展 

近年来，图神经网络(GNN)因其能够直接利用管网拓扑结构而受到广泛关注[45]。GNN 将管网节点

与管段视为图结构中的节点与边，可同时建模需水特征与水力连接关系。Zanfei 等[46]采用图卷积循环神

经网络进行需水预测，证明了管网拓扑信息对预测精度的提升作用。在复杂给水管网中，GNN 在预测精

度与模型泛化能力方面均优于仅考虑时间或空间特征的模型[47]。 
GNN 在管网漏损检测与定位领域也展现出良好应用前景。Zhang 等[13]提出了算法知情图神经网络

(AIGNN)，利用 Ford-Fulkerson 算法知识增强模型的泛化能力。Wu 等[48]开发了基于图卷积神经网络

(CGNN)的管网漏损定位模型，在中国 H 市的实际案例中取得了 90%以上的定位准确率。Barros 等[12]将
图像信号处理技术应用于管网压力数据分析，实现了基于时变图结构的漏损检测。 
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3.4. 各算法在给水管网应用中的局限性 

尽管上述机器学习模型在给水管网需水预测中展现出显著优势，但各类算法在实际工程应用中仍存

在不同程度的局限性，需在模型选择与部署时加以考虑。 
(1) LSTM 的长时记忆失效问题 
LSTM 虽通过门控机制设计用于捕捉长期依赖关系，但在实际应用中，当序列长度超过数百个时间

步时，其对远距离历史信息的记忆能力会显著衰减[49]。在给水管网场景下，当需利用数周甚至数月前的

用水模式信息(如季节性特征、节假日效应)时，标准 LSTM 模型往往难以有效捕捉这些长周期依赖关系。

此外，LSTM 在训练过程中仍可能出现梯度消失问题，导致模型对早期输入信息的敏感度降低[50]。 
(2) GNN 的过平滑问题 
图神经网络在深层堆叠时会出现过平滑(over-smoothing)现象，即随着网络层数增加，不同节点的特

征表示趋于一致，导致模型对局部特征的区分能力下降[51]。对于大规模城市给水管网，这一问题尤为突

出：当 GNN 层数增加以扩大感受野、捕捉更远距离的拓扑依赖时，节点特征可能在信息传播过程中被过

度平滑，反而降低预测精度[52]。目前，残差连接、跳跃连接、DropEdge 等技术被用于缓解过平滑问题，

但在复杂管网拓扑下的效果仍有待进一步验证。此外，GNN 的计算复杂度随管网规模增大而显著上升，

对于包含数万节点的实际城市管网，模型的训练与推理效率面临挑战[53]。 
(3) 深度强化学习的训练收敛难问题 
深度强化学习(DRL)在泵站调度优化中虽展现出良好应用前景，但其训练过程面临多重挑战。首先，

样本效率低是 DRL 的固有缺陷，智能体需要与环境进行大量交互才能学习到有效策略，而给水管网的真

实运行数据获取成本高昂，仿真环境与实际系统之间又存在不可避免的模型偏差(sim-to-real gap) [54]。其

次，奖励函数设计直接影响策略学习方向，但在多目标优化场景下(如同时考虑能耗、水压、水质等)，奖

励函数的权重设置缺乏统一标准，不同设计可能导致策略收敛到截然不同的局部最优解[55]。此外，DRL
在高维连续动作空间中的稳定性较差，策略梯度估计的高方差容易导致训练过程振荡甚至发散。 

(4) 集成学习模型的适用边界 
随机森林与 XGBoost 等集成学习模型虽然训练稳定、对噪声鲁棒，但其本质为静态映射模型，难以

有效建模时序数据中的动态依赖关系。在需水量呈现明显自相关特征的场景下，集成学习模型的预测精

度通常逊于循环神经网络。此外，这类模型对特征工程的依赖程度较高，需要人工构建滞后特征、滑动

窗口统计量等时序特征，增加了模型开发的工作量与领域知识要求[56]。 
 

Table 1. Model performance comparison 
表 1. 模型性能对比 

模型类型 代表算法 预测精度 适用场景 减碳效果 计算复杂度 参考文献 

时间序列 LSTM, GRU >90% 短期需水预测 间接(提升调度精度) 中等 [34]-[37] 

空间建模 CNN, CNN-BiLSTM 85%~92% 多分区协同预测 10%~15%节能 较高 [42]-[44] 

图网络 GNN, GCRNN 90%~95% 复杂拓扑管网 10%~20%节能 高 [46]-[50] 

集成学习 RF, XGBoost 88%~93% 中短期、噪声数据 间接 低 [38]-[41] 

强化学习 DQN, PPO - 实时调度优化 10~30%节能 高 [54]-[56] 

 
具体模型性能对比如表 1 所示，表中性能指标来源于不同研究在各自数据集上的报告结果。但目前

给水管网需水预测领域尚缺乏公开统一的基准数据集，不同研究采用的实验条件(包括管网规模、时间分

辨率、气象条件、数据质量、评价指标定义等)存在显著差异，因此表中数值仅供参考，难以进行严格的
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横向比较。未来研究亟需建立标准化的基准数据集与统一评估协议，以实现不同算法性能的公平对比，

这也是当前文献间比较的主要难点所在。 

4. 机器学习驱动的低碳调度优化 

4.1. 预测与调度耦合的减碳路径 

机器学习模型通过提高需水预测精度，为给水管网调度提供更可靠的输入。在此基础上，结合变频

泵控制、压力分区管理与错峰供水策略，可使泵站运行更接近高效率区间，从而直接降低系统能耗与碳

排放[57] [58] (如图 2)。Chen 等[59]将深度学习与 ResNet 自注意力机制相结合，开发了污水泵站能耗优

化模型，与传统 PID 控制相比可实现 10%~30%的节能效果。 
深度强化学习(DRL)在泵站实时调度优化中展现出显著优势。Hajgató 等[60]将深度 Q 网络(DQN)应

用于配水系统泵站优化，发现 DRL 方法在保持与传统优化方法相当性能的同时，计算速度提升了 2 倍。

Shen 等[61]提出了基于近端策略优化(PPO)的泵站实时调度方法，有效平衡了系统韧性与运行成本。Li 等
[62]开发了知识辅助强化学习框架(KA-RL)，结合历史数据知识指导奖励函数设计，在任意管网拓扑下实

现了压力管理优化。 
 

 
Figure 2. Schematic diagram of the coupling mechanism of forecasting-scheduling-carbon reduction 
图 2. 预测–调度–减碳耦合机制示意图 

4.2. 不同模型在减碳效果上的比较 

现有研究普遍认为，单纯基于时间序列的预测模型在减碳效果上存在一定局限，而引入空间或拓扑

信息的模型在多区域协同调度中展现出更高潜力[63]。在实际案例中，基于 GNN 的预测与调度策略可实

现 10%~20%的泵站能耗降低，相应碳排放强度显著下降[64]。 
多目标优化方法在泵站调度中也得到了广泛应用。Abdallah 等[65]采用粒子群优化算法(PSO)和非支

配排序遗传算法(NSGA-II)进行泵站调度优化，在能效与水质之间实现了有效权衡。Filipe 等[66]将数据驱

动方法与预测控制相结合，在污水泵站能耗优化中取得了显著效果。神经进化方法在实时多目标优化中

也展现出良好前景，可在系统韧性与运行成本之间探索帕累托前沿[67]。 

4.3. 预测–调度耦合的算法流程与不确定性处理 

机器学习驱动的给水管网低碳调度系统通常采用两阶段耦合架构：第一阶段为需水预测模块，负责
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生成未来时段的需水量预测值及其不确定性估计；第二阶段为调度优化模块，以预测结果为输入，在考

虑系统约束与不确定性的条件下求解最优泵站运行策略。需水预测模块不仅输出点预测值 ˆ
tD ，还应提供

预测不确定性的量化估计。常用的不确定性表征方式包括：① 预测区间：给出覆盖率为(1 α− )的置信区

间 ,ˆ ˆlower upper
t tD D ，其中α 通常取 0.05 或 0.10；② 概率密度分布：采用分位数回归或蒙特卡洛 Dropout 等

方法，输出预测值的完整概率分布 P ( t tD X )；③ 集成预测：利用多模型集成输出预测均值与方差( tµ , 
2
tσ )。 

调度优化模块接收预测模块的输出后，可采用以下策略处理预测不确定性：策略 A (鲁棒优化方法)：
在最坏情况假设下进行调度决策，将需水量设定在预测区间的上界 ˆ upper

tD ，确保在任何可能的需水实现下

系统均能满足供水约束。该方法保守性强，适用于供水安全性要求极高的场景。策略 B (随机规划方法)：
将需水量视为随机变量，基于预测概率分布构建多场景优化模型。通过对多个需水场景进行加权优化，

在期望意义下最小化能耗与碳排放，同时通过机会约束控制供水不足的风险概率。策略 C (滚动时域优

化)：采用模型预测控制框架，在每个控制时刻根据最新预测结果重新求解优化问题，仅执行当前时刻的

控制动作。这种闭环控制方式能够有效补偿预测偏差，提高系统对不确定性的适应能力。策略 D (深度强

化学习的隐式处理)：在 DRL 框架下，智能体通过与环境的持续交互学习最优策略，预测不确定性被隐

式地纳入状态转移概率中。经过充分训练的 DRL 策略能够自适应地应对不同程度的预测偏差，无需显式

建模不确定性分布。图 3 清晰阐述了需水预测结果如何作为输入传递给优化调度模型，并展示了调度模

型如何处理预测的不确定性。 
 

 
Figure 3. Coupling framework and data flow diagram of water demand forecasting and dispatching optimization 
图 3. 需水预测–调度优化耦合框架与数据流向图 

5. 典型城市应用与工程可行性 

以上海、深圳、郑州等城市为代表的国内研究表明，在具备完善监测系统与信息化基础的条件下，
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机器学习模型能够与现有 SCADA 系统实现较高程度的集成[68]。粤海水务大罗水厂采用“减碳、换碳、

抵碳”三步走策略，通过优化选址实现重力流输配，供水系统电耗低至 16.57 kWh/kt，仅为行业平均水平

的 6.81% [69]。 
在国际层面，意大利东北部城市采用 PSO 优化的 LSTM 模型进行区域需水预测，在多个独立计量区

域(DMA)实现了较高的预测精度[70]。这些实证结果显示，在引入数据驱动预测与智能调度后，给水管网

系统在降低能耗与碳排放的同时，供水安全性与运行稳定性均得到有效保障，表明该技术路径在工程实

践中具有较高可行性。 

6. 结论与展望 

综上所述，给水管网系统碳排放高度集中于运行阶段，尤其是泵站能耗与预测偏差引发的非最优运

行行为。机器学习通过提升需水预测精度并支撑低碳调度决策，在降低系统碳排放方面展现出显著潜力。

本文得出以下主要结论： 
(1) 给水管网运行阶段碳排放占全生命周期排放总量的 80%以上，泵站能耗是主要排放源，管网漏损

引发的间接碳排放不容忽视。 
(2) LSTM、GNN、随机森林及 XGBoost 等机器学习模型在需水预测中展现出显著优势，预测精度可

达 90%以上，其中 GNN 能够有效利用管网拓扑信息提升预测精度与泛化能力。 
(3) 深度强化学习与多目标优化算法在泵站调度优化中可实现 10%~30%的节能效果，预测精度每提

升 1%可带来 0.6%~1.2%的能耗降低。 
未来研究可进一步关注以下方向；① 模型自身能耗的评估与优化；② 老旧管网数据不完备条件下

的模型鲁棒性研究；③ 预测–调度–碳排放耦合机制的系统化建模；④ 数字孪生与物理信息融合的智

能水务系统构建。这些研究将为给水管网低碳运行提供更坚实的理论与技术支撑。 
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