World Journal of Forestry #Rikit 5, 2026, 15(1), 184-197 Hans X
Published Online January 2026 in Hans. https://www.hanspub.org/journal/wijf
https://doi.org/10.12677/wif.2026.151023

ZTFMaxEnti= 3! 5 o E RO LA S
vagizhyid Ul

MR
AL TR R A S TR B, s

Weks . 20254F12 130 #HBER: 20264F1H6H; KA HM: 20264F114H

=

IR R LR A R S HREE T, BEARERMEEEEX, R AEMaxEntiiE 5
ArcGISZERSHTHAR, BERERANI10N KM LR RAL KAV SRS, X HAE LT K4 R KB
IETEE A X AT T 4347 « 45 SRR, MaxEntiZ! 2R TVEHRHE #12% T 4 (Area under the curve,
AUC)fE50.889, TRILREBUFAIEM. WIN BRI FEZEREKE (biol12). BATEHIMEK
H(bio19). BAZE M FHEE (bioll). £ FHEE (biol). HTEFENFIIEE (bio9). BHAHh
)R IR (bio5) M. 54AIEANXAMEL, WMSFEEET, RROMERMEBEXIIFYT KEH.
e Ak

BRI L4, MaxEntiER, RERET, EHEXHM

Prediction of Potential Distribution of
Populus tremula Forests in China
Based on the MaxEnt Model

Penghao Li

School of Environmental Science and Engineering, North China Electric Power University, Beijing

Received: December 13, 2025; accepted: January 6, 2026; published: January 14, 2026

Abstract

To identify the dominant environmental factors affecting the distribution of Populus tremula forests,
and quantify their potential suitable habitats in different periods, this study used the MaxEnt model
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and ArcGIS spatial analysis technology, integrated 910 distribution sites of European aspen forests
in China and bioclimatic data, to predict and analyze their potential suitable habitats in the current
period and four future periods. The results showed that the Area Under the Curve (AUC) value of
the MaxEnt model was 0.889, indicating that the prediction results had good reliability. The distribu-
tion of European aspen forests was mainly affected by annual precipitation (bio12), precipitation
of the coldest quarter (bio19), mean temperature of the coldest quarter (bio11), annual mean tem-
perature (biol), mean temperature of the driest quarter (bio9), and maximum temperature of the
warmest month (bio5). Compared with the current suitable habitats, the suitable habitats in the
four future decades showed an expansion trend under the four climate scenarios.
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Figure 1. Distribution points of Populus tremula Forests
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Table 1. Nineteen bioclimatic factors
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Figure 3. Current suitable areas for Populus tremula forests
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Figure 4. Future suitable areas for Populus tremula Forests: (a)~(d) are the distribution maps of suitable areas for European poplar
forests in the 2021s~2040s, 20415~2060s, 2061s~2080s, and 2081s~2100s, respectively
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Table 2. Area of suitable habitats under different climate scenarios in various periods
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A AEfEEE AREAEXA10 km?)  RIEAX(101km?)  HUEAX(101km?) G X (10 km?)
Current 618.79 188.72 84.31 68.18
SSP126 538.22 172.50 90.54 158.74
20 SSP245 554.68 172.74 90.91 141.67
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SSP370 508.84 190.44 120.03 140.69
SSP585 531.90 183.28 96.76 148.06
SSP126 519.25 193.54 113.26 133.94
41-60 SSP245 483.43 174.39 113.97 188.21
SSP370 566.78 94.69 94.69 118.62
SSP585 520.85 184.89 96.39 157.87
SSP126 526.54 167.55 94.97 170.95
61-80 SSP245 488.77 180.71 180.71 180.71
SSP370 494.85 149.36 106.30 209.49
SSP585 414.34 146.64 104.47 294.56
SSP126 556.46 164.11 86.10 153.33
81-00 SSP245 448.95 161.62 123.34 226.10
SSP370 459.49 14791 110.40 242.20
SSP585 414.34 146.64 104.47 294.56
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Figure 5. Test of important environmental factors using the knife-cut method: (a) shows the test gain, (b)

shows the regularized training gain
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Table 3. Key environmental factors
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Figure 6. Response curves of important environmental factors: (a)~(f) correspond to annual mean temperature, maximum
temperature of the hottest month, mean temperature of the driest quarter, mean temperature of the coldest quarter, annual
precipitation, precipitation seasonality, and precipitation of the coldest quarter, respectively
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R AUC fH5 0.889, FEABIAUKEEE R4F, R BA RIFMERR TR EEE[17]. £ 19 DMEY
W TR, R BRI RO R Lk ) E R R, S HAL S TR R RBUEE[2] [18]. 45
RRY, TEAMSIEZRES, BB LA AR s TR, IR R K & (bio12) Rl A ZE
P 7K B (biol9), TIRAZRILE] 46.2%. 74T AN 45 BRI v] B8 52 21 FoAth Py 72 PR 22 (0 104 HiE 2 A R
AR T B DA S AME R R 520 o SR1T, A TEAUE A T AUER R, 2R 7 A%k R KA ZKIES)[19]
PIVETERS M, N80T DL A A R 25 T BET TR LA AR & B X, 7T B85 00 25 SRAFAE — S 22

5. &5t

AHEFFFH MaxEnt B8R ArcGIS FIFH TiEF 1 176 AN 534 s f 19 AN AEY SR AR50 T BRI L
MARIELE A . IRIELE R, KMk B AN fEE A X EEAMERIL. Bdb, B ffpEnX . 4
7K B (biol2). A EMIIEKE (biol9). MAZ=EMFIIRE (biol 1)y A2 2 (bio1) 72 520 K Ll
MR A ISR IR SR IR o AORVURMESE T, BRI MR IIE 4 0 A5 X ik 2L Kk g AL
W E TR, DORP RIS T BRI LA AR I A X3 I PR AL AR B Tk o ASBE S0 T RERR I LL Ao <
AL AR AL T RS, AL AES RE NS E S RIS T E s SRS i, HohT
BRI K S 5 A ) 2 FEIEE AR
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